Compliance Report 2021-2022

Kooragang Island Waste Emplacement Facility, Area 2 Closure Works

EPBC 2016/7670

Revision 1

9 November 2022

Document history and status

Revision	Date	Description	Ву	Checked	Approved
А	27 Oct 2022	Draft	G. Moylan	M. Bardsley	M. Bardsley
1	9 Nov 2022	Final	G. Moylan	M. Bardsley	M. Bardsley

Declaration of Accuracy

In making this declaration, I am aware that sections 490 and 491 of the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) make it an offence in certain circumstances to knowingly provide false or misleading information or documents. The offence is punishable on conviction by imprisonment or a fine, or both. I declare that all the information and documentation supporting this compliance report is true and correct in every particular. I am authorised to bind the approval holder to this declaration and that I have no knowledge of that authorisation being revoked at the time of making this declaration.

Signed

Mode

Full name (please print)

Position (please print)

Organisation

Date

Michael Bardsley

Environmental Manager

Hunter & Central Coast Development Corporation ABN 94 688 782 063

9 November 2022

Contents

1.	Purpose of the Report2
2.	Description of Activities5
3.	Approval Compliance7
4.	Conclusion17

Figures

Figure 1: Project Locality	3
Figure 2: Footprint of the Action area	4

Tables

Table 1: 2021-2022 Activities	5
Table 2: Approval Conditions Compliance Table	7

Appendices

Appendix A – Construction Environmental Management Framework (Jacobs, 2019) Appendix B – Green and Golden Bell Frog Management Plan (Golder Associates, 2011) Appendix C – Kooragang Island Wide GGBF Survey Program, 2021/22 Report – Graphical Summary (University of Newcastle, 2022) Appendix D – KIWEF Datalogger Download Monitoring – October 2021 (Robert Carr & Associates, January 2022) Appendix E – KIWEF Datalogger Download Monitoring – June 2022 (Robert Carr & Associates, August 2022)

Appendix F – KIWEF Annual Groundwater & Surface Water Monitoring 2022 (Hazmat Services, June 2022) Appendix G – KIWEF Area 2 Cap Maintenance Summary (Ecological Australia, 2022)

1. Purpose of the Report

The Kooragang Island Waste Emplacement Facility (KIWEF) Area 2 Closure Works Project was undertaken by Daracon Contractors Pty Ltd (Daracon) between August 2019 and July 2020. The Hunter and Central Coast Development Corporation (HCCDC) was acting as the agent of the New South Wales (NSW) Government for the closure of KIWEF, a former landfill site that received waste from the former Broken Hill Proprietary (BHP) Company Limited Mayfield steelworks and associated operations.

KIWEF is a 179-hectare site located on the western portion of Kooragang Island, approximately 7km north west of Newcastle's city centre. The site is bounded by Newcastle Coal Infrastructure Group to the south, the Port Waratah Coal Services – Kooragang Coal Terminal railway line to the west and north and adjacent industrial land consisting of third part waste facilities to the east. The action involves the closure of a 32-hectare portion of referred to as Area 2, shown on Figure 1.

In 2019, HCCDC completed an assessment of impact to matters of national environmental significance (MNES) under the *Environment Protection and Biodiversity Conservation (EPBC) Act 1999.* The Department of Agriculture, Water and Environment (DAWE, previously Department of Environment and Energy) granted approval for the project (EPBC 2016/7670) under sections 130(1) and 133(1) of the EPBC Act, on 22 March 2019.

The Area 2 closure works consisted of the construction of an engineered cap over the former landfill. The site is complicated by presence of MNES including Wetlands of International Importance and listed threatened species including the *Litoria aurea*, Green and Golden Bell Frogs (GGBF) and migratory wading birds.

This report documents HCCDC's compliance with the conditions of the approval issued under the EPBC Act for the action (EPBC 2016/7670) and to satisfy Condition 15 of that approval, which states:

Annual compliance reporting

15. The approval holder must prepare a compliance report for each 12 month period following the date of the commencement of the proposed action, or as otherwise agreed to in writing by the Minister. The approval holder must:

- a) publish each compliance report on the website within 60 business days following the relevant 12 month period;
- b) notify the Department by email that a compliance report has been published on the website within five business days of the date of publication;
- c) keep all compliance reports publicly available on the website until this approval expires;
- d) exclude or redact sensitive ecological data from compliance reports published on the website; and
- e) where any sensitive ecological data has been excluded from the version published, submit the full compliance report to the Department within five business days of publication.

Note: The first compliance report may report a period less than 12 months so that it and subsequent compliance reports align with the similar requirement under state approval. Compliance reports may be published on the Department's website.

The action was commenced on 21 August 2019 and works on site were completed within a single reporting period. **Section 2** provides further detail on the activities completed within the current reporting period (nominally between September 2021 and August 2022). **Section 3** demonstrates the sites compliance throughout the current maintenance period, against the conditions granted under EPBC 2016/7670.

Figure 1: Project Locality

Figure 2: Footprint of the Action area

2. Description of Activities

Civil works for the controlled activity were completed by the contractor (Daracon) on 10 July 2020. Since then, the site has been managed by HCCDC to conduct the required monitoring and maintenance of the site, including establishment of vegetation, removal of weeds or vegetative species that could damage the capping layer and repair any damage caused by stormwater erosion.

A breakdown of works undertaken within Area 2 during the current period are summarised below in Table 1.

Table 1: 2021-2022 Activities

Works Undertaken	Date of Works			
Annual GGBF Monitoring – A team of amphibian researchers from the University of Newcastle (UoN) undertook three complete rounds of KIWEF/Ash Island ecological surveys across 2021/2022 summer season as required by the KIWEF GGBF Management Plan and condition 3 of the EPBC 2016/7670. In addition, UoN undertook several smaller targeted surveys of selected pond areas, including around the Area 2 site (7 additional targeted surveys). The complete monitoring program includes (but is not limited to) the survey of 80 ponds (and their surrounds) across the KIWEF site and adjacent national park area in Ash Island, for the following:	September 2021 to May 2022			
 Presence/absence of GGBF (and other frog species); 				
GGBF distribution;				
Habitat utilisation;				
GGBF behaviour;				
GGBF size, age and gender;				
I agging/recapturing of GGBF to track movement patterns;				
Presence/absence of predators including Gambusia holprooki.	O stal an 0004			
Carr and Associates) undertook the third round of Continuous Datalogging as required by the Water Quality Management Plan and condition 6 of EPBC 2016/7670. The network of 13 continuous dataloggers installed within surface water bodies around the KIWEF were downloaded and the resultant data was compared to the established salinity threshold levels for chytrid protection. Results indicate receiving waters from footprint of the Area 2 action are slightly wetter and fresher than prior to construction, consistent with the hydro-salinity modelling results and underlying assumptions of the environmental assessment. It is also noted that increased rainfall had been experienced during this period as a result of climatic factors (<i>La Niña</i>).				
Biannual Cap Inspection – HCCDC conducted a site walkover to inspect capped areas for signs that the cap has eroded, degraded or slumped. The inspection identified several items requiring rectification including:	December 2021			
 The growth of vegetation with root systems that can damage the capping layer; 				
Some areas identified with low density vegetation regrowth.				
KIWEF Annual Water Quality Monitoring – HCCDC's consultants (Hazmat Services) undertook the Annual Water Quality Monitoring as required by the Water Quality Management Plan and condition 6 of EPBC 2016/7670. The network of 50 groundwater monitoring locations and 5 surface water monitoring locations were sampled and analysed for a variety of parameters and pollutants as specified by the NSW EPA issued Surrender Notice.	June 2021			

.

Works Undertaken	Date of Works
Biannual Surface Water Datalogger Download – HCCDC's consultants (Robert Carr and Associates) undertook the fourth round of Continuous Datalogging as required by the Water Quality Management Plan and condition 6 of EPBC 2016/7670. The network of 13 continuous dataloggers installed within surface water bodies around the KIWEF were checked to retrieve the units and download the data. Unfortunately, prolonged very wet weather conditions over consecutive months made several of the locations inaccessible (water levels too high to locate the units, or unsafe for personnel to access) and several units were non-communicable and have been returned to the supplier for repairs. The resultant data from the units that was able to be collected were compared to the established salinity threshold levels for chytrid protection and showed results consistent with expectations.	June 2022
The Water Quality Management Plan indicated the Continuous Datalogger Monitoring would continue for 2 years post construction, which would make this fourth download event the final round. However due to the inaccessibility of some locations in current round, HCCDC proposes to conduct one further download round (November/December 2022) before ceasing the datalogger monitoring.	
Biannual Cap Inspection – HCCDC conducted a site walkover to inspect capped areas for signs that the cap has eroded, degraded or slumped. The inspection identified several items requiring rectification including:	July 2022
 The growth of vegetation with root systems that can damage the capping layer; 	
 Some areas identified with low density vegetation regrowth; 	
 Areas of weed growth identified, particularly around basins. 	
Rectification of all defects were completed under the Annual Cap Maintenance program	
Annual Cap Maintenance – HCCDC's contractors (Daracon) commenced the rectification issues identified by the HCCDC Biannual inspection. These works involved:	August to October 2022
 Removal of targeted vegetation species with roots that can impact capping layer. This was mechanical where possible with ecologists in attendance; otherwise removed individually by hand cutting and painted application of herbicide directly to the freshly cut stump. 	
 Removal of weeds from boundaries of ponds using approved methods (no use of herbicides adjacent to watercourses). 	

3. Approval Compliance

An assessment of the action's compliance with the conditions of the Commonwealth Approval under the EPBC Act (EPBC Ref: 2016/7670) during the 2021-2022 period is summarised in Table 2.

Table 2: Approval Conditions Compliance Table

Condition Ref	Condition	Compliance	Evidence/Comments
PART A – C	CONDITIONS SPECIFIC TO THE ACTION		
1.	The action must only be undertaken within the footprint.	Compliant	During the current period the only works that have disturbed the footprint of Area 2 is the cap maintenance works. As the works were limited to the extent of the cap installed during the construction phase, they are known to be within the footprint shown in Figure 2.
2.	The person taking the action must implement the Green and Golden Bell Frog Management Plan to avoid and mitigate impacts on the Green and Golden Bell Frog (Litoria aurea) (GGBF) population.	Compliant	The GGBF Management Plan was implemented through the reporting period. This included monitoring of the GGBF population by the University of Newcastle (UoN) researchers on behalf of the State, and the preparation of the 2021/22 Island Wide Survey (IWS). A graphical summary of the IWS is provided in Appendix C.
			In addition, during maintenance works that had the potential to harm protected species, the contractor Daracon were also required to have an ecological supervision and clearances prior to undertaking and activities that could injure protected species (and other fauna). Ecological clearance reports are provided as Appendix G.
3.	GGBF monitoring must be undertaken in accordance with the Green and Golden Bell Frog Management Plan within the KIWEF Site, including the temporary basins, aligned with NCIG monitoring program.	Compliant	As described in Section 2, the annual monitoring of GGBF in accordance with the GGBF Management Plan (refer to Appendix B) was undertaken by the University of Newcastle through the spring – summer period. A copy of the 2021/22 IWS Graphical Summary report is provided in Appendix C.
4.	4. GGBF monitoring data must be analysed following each round of monitoring to identify any changes to the GGBF population, as compared to the baseline data described in the Green and Golden Bell Frog Management Plan. Should a decline in population be attributed to the action, response measures must be developed and implemented in accordance with the	Compliant	The UoN 2019-20 IWS results (during Area 2 construction) observed a population increase that was thought to be associated with a mass breeding event in February 2020 that coincided with first significant rainfall after a very dry period.
			The 2020-21 IWS results observed the continued presence of the cohort from the mass breeding event in February 2020, which had grown large enough to be tagged (>40mm) and therefore resulted in a 5-fold increase in the population numbers that were observed.
Green and Golden Bell Frog Management Plan.		The UoN results during the current 2021-22 IWS (refer to Appendix C) has shown an overall population decrease following the mass breeding event in February	

Condition Ref	Condition	Compliance	Evidence/Comments
Ref			2020, back to the typical levels that were observed between 2016-19. The below chart shows the GGBF visual encounter survey results within the KIWEF since the 2014-15 season.
			CCRE Domographics at KIWEE
			Key: Green – Juveniles; Brown – Adults/Sub-Adults
5.	The person taking the action must revegetate the area marked in yellow and identified as 'Area 2 Closure works' on Map 2 at Attachment A to restore Green and Golden Bell Frog habitat in accordance with the Revegetation Management Plan.	Compliant	At the completion of the Area 2 Closure Works, the site was topsoiled and seeded in accordance with the Revegetation Management Plan. Previous Cap Inspections identified several areas where vegetation growth was low. Rectification works conducted in July/August in 2021 included the placement of additional topsoil and reseeding of the area; consistent with the requirements of the Revegetation Plan. The below aerial images from Nearmap taken in October 2021 and October 2022 shows the continued improvement of vegetation establishment across the capped area, and the establishment of movement corridors along drainage lines consistent with the GGBF Management Plan (refer to Appendix B).

Condition Ref	Condition	Compliance	Evidence/Comments
			Science 2021
			October 2022

Condition Rof	Condition	Compliance	Evidence/Comments
Rei			
6.	The person taking the action must undertake water quality monitoring for groundwater and surface water at the KIWEF Site in accordance with the Water Quality Management Plan.	Compliant	The continuous datalogging network were downloaded in October 2021 and June 2022. A copy of the October 2021 report and comparison against salinity threshold levels is provided in Appendix D; and the June 2022 report is provided as Appendix E. The continuous datalogger monitoring is required under the Water Quality Management Plan, to continue for 2 years post-construction and was therefore expected to end in July 2022. However, given recent prolonged very intense wet weather that has been experienced prior to the June 2022 event, several monitoring locations were completely submerged and could not be located. An additional download event will be undertaken prior to end of year 2022 to remove the dataloggers from the pond environments and complete the final download.
			No significant changes to the hydro-salinity results have been observed attributable to the Area 2 works. Changes are consistent with seasonal changes and responses to climatic conditions; also noting that increased rainfall had been experienced during this period as a result of climatic factors (<i>La Niña</i>). The Annual Groundwater and Surface Water monitoring program was completed in
			June 2022 a copy of the report is provided in Appendix F.
7.	At the completion of the project works, the approval holder must ensure:	-	-
i.	no increased distribution of Gambusia holbrooki due to the project works, within the area identified as 'Potential GGBF foraging or breeding habitat' as identified on Map 2 at Attachment A, and	Compliant	The preliminary results reported in the UoN IWS 2021-22 (Appendix C) show the current <i>Gambusia</i> distribution across KIWEF. The mapping (below) shows Gambusia distribution across the KI/Ash Island is currently at its highest levels since the 2015/16 survey period. The University of Newcastle specialists undertaking monitoring have advised that the driver of increased distribution is a consequence of consecutive years of <i>La Niña</i> providing very wet conditions that have increased pond water levels, allowed water to connect between ponds, and therefore providing gambusia with the opportunity to redisperse across the low-lying connected wetlands. The UoN mapping of gambusia distribution (shown below) indicate that the current gambusia free wetlands are predominantly those constructed by HCCDC as part of the KIWEF capping works, including Area 2. The increased distribution of gambusia is therefore not a result of the Action.

Condition Ref	Condition	Compliance	Evidence/Comments
			Gambusia Distribution 2021/22 Key: Green – Gambusia absent; Light Pink – Gambusia appeared during survey season;
ii.	no net loss of GGBF foraging or breeding habitat as an impact of the project works.	Compliant	Foraging habitat within the works footprint was temporarily reduced during the construction activities, however the site is being revegetated in accordance with the
			Revegetation Management Plan following construction completion. The Biannual Inspection identified continued establishment of vegetation across the capped areas in accordance with the Revegetation Management Plan. In addition, movement corridors (through additional aquatic habitat with connecting vegetated drainage lines) are continuing to establish, consistent with the GGBF Management Plan (refer to Appendix B). During the 2021/22 IWS, UoN ecologists captured and processed 81 adult GGBF's from the constructed ponds within Area 2 project (including the Peninsula wetlands), confirming no net loss of GGBF foraging habitat following the project works.

Condition Ref	Condition	Compliance	Evidence/Comments		
8.	The approval holder must implement the KIWEF Site EMP.	Compliant	The Post Construction elements of the Construction Environmental Management Framework (CEMF, provided as Appendix A) including the preparation of the Construction Validation Report and Independent Auditors Report of the construction works have been completed and submitted to the NSW EPA in accordance with the requirements of the CEMF and Surrender Notice. The site has continued to implement the requirements of the GGBF Management Plan (Appendix B) throughout the Post-Construction period including the Island Wide Survey monitoring (Appendix C) and ecological pre-clearance surveys (Appendix G) prior to any ground disturbing activities or works that could potentially harm protected species.		
			The Post-Completion Water Monitoring has also been conducted in accordance with the requirements of the CEMF (Appendix D to Appendix F)		
PART B – S	STANDARD ADMINISTRATIVE CONDITIONS				
Notification	of date of commencement of the proposed action	1			
9.	The approval holder must notify the Department in writing of the date of commencement of the action within 10 business days after the date of commencement of the action.	Compliant	HCCDC issued notification to the DCCEEW (previously DAWE) on commencement of works on 4 September 2019. The notification included a confirmation that earthworks had commenced on 21 August 2019		
10.	If the commencement of the action does not occur within 5 years from the date of this approval, then the approval holder must not commence the action without the prior written agreement of the Minister.	Not Applicable	HCCDC commenced within one year of the approval being issued.		
Complianc	Compliance records				
11.	The approval holder must maintain accurate and complete compliance records.	Compliant	Reporting and analysis of groundwater, surface water, GGBF monitoring and cap inspection reports are maintained by HCCDC.		
12.	If the Department makes a request in writing, the approval holder must provide electronic copies of compliance records to the Department within the timeframe specified in the request.	Not Applicable	No request has been made by the Department for compliance records to be provided		
Note: Compliance records may be subject to audit by the Department or an independent auditor in accordance with section 458 of the EPBC Act, and or used to verify compliance with the conditions. Summaries of the result of an audit may be published on the Department's website or through the general media.					

Condition Ref	Condition	Compliance	Evidence/Comments
Preparatio	n and publication of plans		
13.	The approval holder must:	-	-
a.	publish all plans associated with the action on the approval holder's website within 30 business days of the date of approval of the action;	Compliant	Commonwealth and State approval documents/plans were uploaded to the HCCDC website: <u>https://www.hccdc.nsw.gov.au/kooragang-island-waste-emplacement-facility</u>
b.	exclude or redact sensitive ecological data from plans published on the website or provided to a member of the public; and	Not Applicable	No sensitive ecological data was required to be redacted from the documents.
C.	keep plans published on the website until the end date of this approval	Compliant HC of PC we	HCCDC will continue to maintain the project plans on the website until completion of the closure works and the approval is transferred to Port of Newcastle.
			Port of Newcastle will then be responsible for uploading project plans on their website when approval transfers.
14.	The approval holder must ensure that any monitoring data (including sensitive ecological data), surveys, maps, and other spatial and metadata required under a plan, is prepared in accordance with the Department's Guidelines for biological survey and mapped data (2018) and submitted electronically to the Department in accordance with the requirements of the plan.	Compliant	The data for the current 2021-22 monitoring season compliant with the Department Guidelines is ready to be submitted to the Department once the compliance report has been issued.
Annual cor	npliance reporting	•	
15.	The approval holder must prepare a compliance report for each 12 month period following the date of the commencement of the proposed action, or as otherwise agreed to in writing by the Minister. The approval holder must:	Compliant	The Date of Commencement for the Action is 21 August 2019.
for each commen agreed t			The Annual Compliance Report for the Construction Period (2019/20) was prepared by an independent firm (Ramboll) who audited HCCDC and its Contractors (Daracon) compliance with the EPBC Approval requirements.
			The Annual Compliance Reports for the Project Works Period (2 years post- construction, ie 2020/21 and 2021/22 – this submission) were prepared by HCCDC.
a.	publish each compliance report on the website within 60 business days following the relevant 12	Compliant	The EPBC 2016/7670 Annual Compliance Reports were published on the HCCDC website, on the following dates:
	month period;		• 2019/20 Annual Compliance Report was published on 11 November 2020.
			• 2020/21 Annual Compliance Report was published on 11 November 2021.
			The Annual Compliance Report for 2021/22 is to be published prior to 15 November 2022

Condition	Condition	Compliance	Evidence/Comments	
b.	notify the Department by email that a compliance report has been published on the website within five business days of the date of publication;	Compliant	 HCCDC notified DCCEEW (previously DAWE) that the Annual Compliance Reports were published on HCCDC's website, on the following dates: 2019/20 Annual Compliance Report – DAWE notified 13 November 2020. 2020/21 Annual Compliance Report – DAWE notified 15 November 2020. 	
			HCCDC expect to notify DCCEEW prior to 29 November 2022, that the 2021/22 Annual Compliance Report has been published.	
C.	keep all compliance reports publicly available on the website until this approval expires;	Compliant	The Annual Compliance Reports for 2019/20, 2020/21 and 2021/22 will remain on the HCCDC website until the site and Commonwealth Approval are transferred to the Port of Newcastle at completion of the project works. Port of Newcastle will be responsible for uploading project plans on their website when approval transfers.	
d.	exclude or redact sensitive ecological data from compliance reports published on the website; and	Not Applicable	No sensitive ecological data was required to be redacted from the documents.	
e.	where any sensitive ecological data has been excluded from the version published, submit the full compliance report to the Department within five business days of publication.	Not Applicable	No sensitive ecological data was required to be redacted from the documents.	
Note: The first compliance report may report a period less than 12 months so that it and subsequent compliance reports align with the similar requirement under state approval. Compliance reports may be published on the Department's website.				
Reporting	non-compliance			
16.	The approval holder must notify the Department in writing of any: incident; non-compliance with the conditions; or non-compliance with the commitments made in plans. The notification must be given as soon as practicable, and no later than two business days after becoming aware of the incident or non-compliance. The notification must specify:	Not Applicable	There were no non-compliances during the current period; and a notification to the Department was therefore not required.	
a.	the condition which is or may be in breach; and	-	-	
b.	a short description of the incident and/or non- compliance.	-	-	

Condition Ref	Condition	Compliance	Evidence/Comments
17.	The approval holder must provide to the Department the details of any incident or non-compliance with the conditions or commitments made in plans as soon as practicable and no later than 10 business days after becoming aware of the incident or non-compliance, specifying:	Not Applicable	There were no incidents or non-compliances during the current period; and a notification to the Department was therefore not required.
a.	any corrective action or investigation which the approval holder has already taken or intends to take in the immediate future;	-	-
b.	the potential impacts of the incident or non- compliance; and	-	-
C.	the method and timing of any remedial action that will be undertaken by the approval holder.	-	-
Independe	nt audit		
18.	The approval holder must ensure that independent audits of compliance with the conditions are conducted:		
i.	Following the completion of onsite construction works and prior to the completion of the project works period;	Compliant	The Area 2 Independent Audit (Construction Phase) is In Progress. On 18 May 2022, HCCDC engaged EMM Consulting to act as the Independent Auditor for the project works period. Further details of the Independent Audit provided under Condition 19.
ii.	Within a 12month period from the completion of the action;	Not Applicable	Port of Newcastle to undertake Independent Audit at the completion of the project action (post-transfer of the Approval) 31 December 2030.
iii.	or as requested in writing by the Minister.	Not Applicable	No independent audit has been requested by the Minister.
19.	For each independent audit, the approval holder must:		
a.	provide the name and qualifications of the independent auditor and the draft audit criteria to the Department;	Compliant	EMM's nominated Audit team and their qualifications (with David Bone as Lead Auditor) and the draft Audit criteria; were submitted to DCCEEW on 10 June 2022.
b.	only commence the independent audit once the audit criteria have been approved in writing by the Department; and	Compliant	DCCEEW provided HCCDC with a Letter approving the nominated Auditor, Audit Team and the draft audit criteria on 19 August 2022.

Condition Ref	Condition	Compliance	Evidence/Comments		
C.	submit an audit report to the Department within the timeframe specified in the approved audit criteria.	Compliant	The DCCEEW Letter Approving the Independent Auditor and Audit Criteria (dated 19 August 2022), confirmed that the Audit Report was to be submitted to DCCEEW by 28 January 2023.		
20.	The approval holder must publish the audit report on the website within 10 business days of receiving the Department's approval of the audit report and keep the audit report published on the website until the end date of this approval.	Not Applicable	The Independent Audit (Construction Phase) is currently In Progress. The Audit Report will be published following submission to DCCEEW and receiving the Departments approval of the Audit Report.		
Completion	Completion of the action				
21.	Within 30 days after the completion of the action, the approval holder must notify the Department in writing and provide completion data.	Not Applicable	Port of Newcastle will be taking over the Commonwealth Approval for the Area 2 Closure Works (Post-Construction Phase) and will be responsible for notifying the Department of the completion of the action in 2030, following completion of the necessary monitoring, maintenance and auditing required.		

4. Conclusion

This report has been prepared to assess compliance with the conditions of the approval issued under the EPBC Act for the action (EPBC 2016/7670) and to satisfy Condition 15 of that approval. The undertaking of the action during the reporting period has been assessed to be compliant with the conditions of EPBC 2016/7670. No non-compliance issues were identified.

Onsite construction works were completed in July 2020. As such completion of the project works (defined as two years following completion of onsite construction works) will occur in August 2022.

An Independent Audit as required by condition 18 i) for the 'Completion of the Project Works' is currently In Progress. DCCEEW has approved the Audit Team and Audit Criteria and set a due date for delivery of the Audit Report to the Department by the 28 January 2023.

Appendix A – Construction Environmental Management Framework (Jacobs, 2019)

Kooragang Island Waste Emplacement Facility Area 2 Closure

Hunter and Central Coast Development Corporation

Construction Environmental Management Framework

IA192100_02 | Final 16 April 2019 HDC369

Kooragang Island Waste Emplacement Facility Area 2 Closure

Project No:	IA192100
Document Title:	Construction Environmental Management Framework
Document No.:	IA192100_02
Revision:	Final
Date:	16 April 2019
Client Name:	Hunter and Central Coast Development Corporation
Client No:	HDC369
Project Manager:	Thomas Muddle
Author:	Thomas Muddle
File Name:	\\jacobs.com\ANZ\IE\Projects\04_Eastern\IA192100\21 Deliverables\CEMP\IA192100_02_KIWEF_A2_CEMF_Final.docx

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 710 Hunter Street Newcastle West NSW 2302 Australia PO Box 2147 Dangar NSW 2309 Australia T +61 2 4979 2600 F +61 2 4979 2666 www.jacobs.com

© Copyright 2019 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
00	14/09/2018	Draft for Client Comment	T Muddle	A Bowden	T Muddle
01	16/04/2019	Final	T Muddle	K Collings	T Muddle

Contents

1.	Introduction	1
1.1	Purpose and Scope	1
1.2	Project Overview	1
1.3	Background	1
1.4	Delivery Mechanism	2
1.4.1	Closure Works	2
1.4.2	Wedge and Peninsular Access	2
2.	Regulatory Requirements	3
3.	General Environmental Management Requirements	4
3.1	Environmental and Sustainability Management System	4
3.2	Environmental Training	4
3.2.1	Induction	4
3.2.2	Daily pre-start talks	4
3.3	Emergency Contacts and Response	5
3.3.1	Emergency Preparedness	5
4.	Implementation	6
4.1	Risk Assessment	6
4.2	Environmental Management Activities and Controls	6
4.3	Environmental Control Plans or Maps	7
4.4	Environmental Schedules	9
5.	Monitoring, Reporting and Review1	0
5. 5.1	Monitoring, Reporting and Review1 Environmental Monitoring1	0 0
5. 5.1 5.1.1	Monitoring, Reporting and Review	0 0
5. 5.1 5.1.1 5.1.2	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Environmental Auditing 1	0 0 1
5. 5.1 5.1.1 5.1.2 5.2	Monitoring, Reporting and Review	0 0 1
5. 5.1 5.1.1 5.1.2 5.2 5.2.1	Monitoring, Reporting and Review. 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting. 1 Daily Record of Material Management 1	0 0 1 1
5. 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2	Monitoring, Reporting and Review	0 0 1 1 2
5. 5.1 5.1.1 5.2 5.2 5.2.1 5.2.2 5.2.3	Monitoring, Reporting and Review. 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1	0 0 1 1 2 2
5. 5.1 5.1.1 5.2 5.2 5.2.1 5.2.2 5.2.3 5.2.3	Monitoring, Reporting and Review 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1	0 0 1 1 2 3
5. 5.1 5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.3	Monitoring, Reporting and Review	0 0 1 1 2 3 3
5. 5.1 5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4	Monitoring, Reporting and Review.1Environmental Monitoring.1Construction Water Quality Monitoring1Environmental Auditing1Reporting.1Daily Record of Material Management.1Monthly Progress Reporting.1Validation Report1Annual compliance reporting.1Corrective Action.1CEMF Review1	0 0 1 1 2 3 3 5
 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen 	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting 1 Nonthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 CEMF Review 1 dix A. Legislative requirements 1	0 0 1 1 2 2 3 3 5
 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen 	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 CEMF Review 1 dix A. Legislative requirements 1 dix B. Environmental Obligation Interface 1	0 0 1 1 2 2 3 5
 5.1 5.1.1 5.2.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen 	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 Corrective Action 1 CEMF Review 1 dix A. Legislative requirements 1 dix B. Environmental Obligation Interface 1 dix D. Flora and Fauna Management Plan 1	0 0 1 1 2 2 3 3 5
 5. 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen Appen Appen 	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 Corrective Action 1 CEMF Review 1 dix A. Legislative requirements 1 dix B. Environmental Obligation Interface 1 dix C. Materials Management Plan 1 dix D. Flora and Fauna Management Plan 1 dix E. Revegetation Management Plan 1	0 0 1 1 1 2 2 3 3 5
5. 5.1 5.1.1 5.2 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen Appen Appen	Monitoring, Reporting and Review 1 Environmental Monitoring 1 Construction Water Quality Monitoring 1 Invironmental Auditing 1 Reporting 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 Corrective Action 1 CEMF Review 1 dix A. Legislative requirements 1 dix B. Environmental Obligation Interface 1 dix C. Materials Management Plan 1 dix D. Flora and Fauna Management Plan 1 dix E. Revegetation Management Plan 1 dix F. Water Quality Management Plan 1	0011122335
5. 5.1 5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen Appen Appen Appen	Monitoring, Reporting and Review. 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Invironmental Auditing 1 Reporting. 1 Daily Record of Material Management. 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting. 1 Corrective Action. 1 CEMF Review. 1 dix A. Legislative requirements 1 dix D. Flora and Fauna Management Plan 1 dix E. Revegetation Management Plan 1 dix F. Water Quality Management Plan 1 dix G. Traffic Management 1	0011122335
5. 5.1 5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen Appen Appen Appen Appen	Monitoring, Reporting and Review. 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Invironmental Auditing 1 Environmental Auditing 1 Reporting 1 Daily Record of Material Management. 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 Corrective Action 1 CeMF Review 1 dix A. Legislative requirements 1 dix B. Environmental Obligation Interface 1 dix C. Materials Management Plan 1 dix D. Flora and Fauna Management Plan 1 dix E. Revegetation Management Plan 1 dix F. Water Quality Management Plan 1 dix G. Traffic Management 1 dix H. Air Quality Management 1	001122335
5. 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Appen Appen Appen Appen Appen Appen	Monitoring, Reporting and Review. 1 Environmental Monitoring. 1 Construction Water Quality Monitoring 1 Environmental Auditing 1 Invironmental Auditing 1 Reporting 1 Daily Record of Material Management 1 Monthly Progress Reporting 1 Validation Report 1 Annual compliance reporting 1 Corrective Action 1 CEMF Review 1 Oth Legislative requirements 1 dix A. Legislative requirements 1 dix D. Flora and Fauna Management Plan 1 dix F. Water Quality Management Plan 1 dix G. Traffic Management 1 dix H. Air Quality Management 1 dix I. Noise Management 1 dix I. Noise Management 1	0011122335

1. Introduction

1.1 Purpose and Scope

This Construction Environmental Management Framework (CEMF) sets out the environmental, stakeholder and community management requirements in relation to the Kooragang Island Waste Emplacement Facility (KIWEF) Area 2 Closure Works. The CEMF provides a link between the environmental and planning regulatory documentation and the construction environmental management documentation to be developed by the Principal Contractors relevant to their scope of works. The Principal Contractors will be required to implement and adhere to the requirements of this CEMF. The requirements of this CEMF will be included as a contract document in all design and construction contracts.

1.2 **Project Overview**

The endorsed approach to the closure of KIWEF is to implement minimal change in site processes by maintaining similar site hydrology, vegetation and surface soils while further isolating potential contaminants. The isolation of contaminants is to be achieved though the reduction of surface water infiltration resulting from the installation of capping with reduced permeability and a moderation of site surface gradients.

The basic principles of the closure works are to reduce surface water infiltration into the groundwater by the following means:

- · Re-grading of the site to a minimum 1% grade to prevent ponding of surface waters;
- · Drainage improvements;
- · Provision of a 0.5 metre (m) thick, low permeability cap; and
- · Rehabilitation using existing topsoil and alternative low nutrient and Chytrid free imported growth medium.

These closure works are to be undertaken within a sensitive and complex environmental context. In particular, the works need to be delivered in a manner which:

- · Complies with regulatory requirements;
- Avoids direct impacts to Matters of National Environmental Significance (MNES) in particular Green and Golden Bell Frogs (GGBF) but also migratory wading birds;
- · Carefully manages indirect impacts to MNES through avoidance of spread of chytrid fungus and predatory aquatic species and through avoiding impacts to water quality of surrounding waterbodies; and
- Manages fill material such that higher risk materials are appropriately isolated from surface waters.

The closure works area is relatively isolated from sensitive human receptors and standard, reasonable and feasible mitigation measures are also to be deployed to minimise environmental impacts.

1.3 Background

Extensive background information has been prepared in relation to the Project and in the first instance the Contractor should refer to the Tender Specifications. The following background is provided for environmental context only.

KIWEF is a former industrial waste disposal area located off Cormorant Road, Kooragang Island, Newcastle New South Wales (NSW). KIWEF ceased operation in 1999 and until this time was used by Broken Hill Proprietary Company Limited (BHP) as a landfill for disposal of waste from their Mayfield steelworks and associated operations. KIWEF was subject to Environment Protection Licence (EPL) 6437 issued under the

Protection of the Environment Operations Act 1997 (PoEO Act) for the scheduled action of "Waste disposal by application to land" first issued in 1999 to BHP and subsequently transferred to Regional Land Management Corporation Pty Ltd in May 2003 and then Hunter and Central Coast Development Corporation (HCCDC (also referred to as HDC in quoted text and reports commissioned by HCCDC prior to the merger of the Hunter Development Corporation with the Central Coast Development Corporation) in January 2008.

HCCDC surrendered EPL 6437 on 8 December 2010 and the NSW Environment Protection Authority (EPA) issued a conditional Surrender Notice 1111840 with subsequent variation notices being issued on 2 May 2013 (notice number 1510956) and 17 April 2014 (notice number 1520063) collectively referred to as the Surrender Notice for the remainder of this report. The Surrender Notice conditions relate primarily to the closure process, and describe the capping that is required across much of the area, and cross reference the GHD (2009) Revised Final Landform and Capping Strategy (the Capping Strategy).

HCCDC are the NSW Public Authority currently assigned responsibility for the closure of KIWEF on behalf of the NSW Government (the State). The land on which KIWEF is located (the closure works area) is owned by the Port of Newcastle Lessor (a NSW Government entity) who has contracted HCCDC as an agent of the State, to complete the KIWEF remedial works in accordance with a Binding Terms of Agreement.

For the purposes of closure, KIWEF has been divided into three areas with Area 2 being the subject of this CEMF while Areas 1 and 3 closure have been completed. Area 2 is further divided into sub areas K3 to K8 with some sub-areas further divided into specific disposal cells.

1.4 Delivery Mechanism

1.4.1 Closure Works

The closure works are to be delivered as a Construction only contract. As such the Contractor is to refer to the Tender Specifications and Design information provided by HCCDC which incorporates and supersedes any design information provided in this CEMF and supporting environmental assessment and management documentation.

1.4.2 Wedge and Peninsular Access

The access track to the Wedge and Peninsular Borrow Pit will be delivered as a design and construct contract so that the Contractor can design the access to cater to their specific equipment access requirements. In addition to complying with the specific environmental performance expectations and mitigation measures contained in this CEMF, the Wedge and Peninsular access will be required to be designed, constructed and used to the satisfaction of ARTC as the owner of the land accommodating the access track. **Construction Environmental Management Framework**

2. Regulatory Requirements

The key environmental obligations for the closure works arise under the following legislation:

- Protection of the Environment Operations Act 1997 (POEO Act);
- Environmental Planning and Assessment Act 1979 (EP&A Act); and
- Environmental Protection and Biodiversity Conservation Act 2000 (EPBC Act).

Various environmental assessments and management plans have been prepared under these Acts as follows:

- **POEO Act** NSW EPA (2010), Approval of the Surrender of a Licence License 6437, (Ref: 1111840, and as varied by notice number 1510956 and 1520063) and associated documents including:
 - Golders (2011), KIWEF Closure Works, Green and Golden Bell Frog Management Plan;
 - GHD (2009), Report on KIWEF, Revised Final Landform and Capping Strategy; and
 - RCA (2012) Materials Management Plan Kooragang Island Waste Emplacement Facility.
- **EP&A Act** Hunter Development Corporation Determination under Division 5.1 of the EP&A Act and associated assessment documentation including:
 - ERM (2016), Review of Environmental Factors, KIWEF Area 2 Closure Works; and
 - Jacobs (2018) Addendum Review of Environmental Factors, KIWEF Areas 2 Closure Works.
- **EPBC Act** Notice of determination of referral number 2016/7670 dated 22 March 2019 and associated documentation including:
 - ERM (2015), KIWEF Area 2 Closure Works, EPBC Referral;
 - ERM (2016), Response to Request for Information, KIWEF Area 2 Closure Works; and
 - Ramboll (2018), EPBC Referral, Preliminary Documentation Package KIWEF Area 2 Closure Works.

The conditions and commitments of these documents are consolidated in the attached sub-plans.

The Closure Works design has been prepared to comply with these requirements and the Contractor is responsible for implementing these designs. Where departures are proposed by the Contractor, it is the Contractors obligation to demonstrate how compliance with all applicable environment regulations is achieved.

The Peninsular access track is to be designed and constructed by the Contractor to accommodate safe access for the Contractor's equipment, in a manner that achieves the general environmental performance expectations within this CEMF and to the satisfaction of ARTC.

Various other environmental legislation and requirements apply to the site as documented in Appendix A and their requirements are generally captured in the attached sub-plans.

3. General Environmental Management Requirements

3.1 Environmental and Sustainability Management System

The Contractor is required to have a corporate Environmental Management System certified under AS/NZS ISO 14001:2015.

3.2 Environmental Training

All Contractor personnel and sub-contractors will undergo environmental training before commencing works on site. Training will be undertaken in the following forms:

- Project Induction; and
- · Regular (daily) pre-start discussions on environmental topics.

Records of induction and training will be kept on the Contractor's database including the topic of the training carried out, dates, names and trainer details. Inductees will be required to sign-off that they have been informed of the environmental issues and that they understand their responsibilities.

3.2.1 Induction

Prior to working on site, the Contractor will ensure that all staff and sub-contractors working on site are appropriately inducted. The Contractors induction must communicate the environmental performance expectations of this CEMF and the specific mitigation measures to achieve these expectations as documented in the Contractors CEMP. Induction content is expected to include:

- · Legal and regulatory requirements including duty of care and potential consequences of infringements;
- Environmental responsibilities with detailed training on the implementation of hygiene protocols and the importance of GGBF;
- Identification of sensitive areas including threatened species habitat, waterways, asbestos impacted waste and other hazardous waste;
- · Identification of boundaries for vegetation clearing, washing, refuelling and maintenance areas for vehicles, plant and equipment;
- Environmental management techniques for noise, air, surface and ground water, waste generation, contaminated land etc;
- Emergency plans and incident management including the use of spill kits;
- · Reporting processes for environmental harm or environmental incidents;
- Roles and responsibilities in achieving conformance with environmental policies and requirements, including emergency preparedness and response requirements; and
- · Identification and management of non-conformances.

3.2.2 Daily pre-start talks

Pre-start talks will help to ensure that timely and relevant information is communicated to the workforce and that feedback can be provided on issues of interest or concern. Pre-start talks should address weather forecasts with implications for daily site environmental management (dust or rainfall response requirements) as a minimum, and where necessary, should be used to provide refresher information on the environmental induction topics and associated environmental procedures.

In the event of environmental near misses or incidents, or changes to procedures that could result in changed levels of environmental risks, pre-start talks may be used to deliver updates.

3.3 Emergency Contacts and Response

An emergency response plan would be prepared and implemented during the Project by the Contractor. The emergency response plan should document the contractor's approach to managing potential hazards and risks, incidents and emergencies. In undertaking planning for emergencies, learning from past incidents, applying risk assessments and training methods should be documented.

3.3.1 Emergency Preparedness

The key to effective prevention of environmental incidents involves selecting the right personnel and subcontractors, promoting a positive attitude to the importance of environmental issues, training, controls, monitoring, and surveillance. During construction activities, inspections and preventative action should include:

- · Daily inspections of active work sites;
- · Completion of routine environmental checklists;
- · Issue and timely and effective close-out of maintenance and non-compliance notices;
- · Maintenance of constant supervision on site;
- On-going environmental training; and
- Environmental audits of work sites, subcontractors and compliance issues.

Environmental and safety information on hazardous substances (e.g. safety data sheets) should be made available at the main site office and near to where such substances are stored and used. These locations will be communicated to all personnel.

Testing of and training in environmental response procedures should be conducted in areas where a pollution risk is present, such as on site and near re-fuelling areas for spill awareness, or worksites near environmentally sensitive areas. Personnel involved in emergency response activities should be provided with specific training.

An up-to-date list of emergency response personnel and organisations should be developed and maintained at the Contractor's main project office.

4. Implementation

4.1 Risk Assessment

The consideration of potential environmental risks has been undertaken through the Environmental Impact Assessment Process. This process has drawn on a significant volume of information. As a minimum, the Contractor is required to have read and understood the documents listed in Chapter 2 such that they have an adequate understanding of the environmental context and management expectations for the Closure Works. In preparing the Contractor's Construction Environmental Management Plan, the Contractor is required to undertake any additional risk assessment they deem necessary to manage environmental risks, such that the performance expectations of the CEMF are achieved when implementing their nominated construction methodology.

Based on HCCDC's understanding of the site, the following priority environmental factors and aspects were identified:

- · Flora and Fauna Management;
- · Erosion and Sediment Control, and Water Management;
- · Contaminated Materials Management; and
- · Rehabilitation.

In addition to the above priority environmental management requirements, suggested mitigation measures for environmental risks including traffic, air quality, lighting, noise, waste, rehabilitation and heritage are addressed in the attached sub-plans and are to be incorporated into the Contractor's work methods.

4.2 Environmental Management Activities and Controls

The documents listed in Chapter 2 identify environmental management and monitoring measures that apply to the Closure Works. These documents include:

- Hunter Development Corporation Report on KIWEF Revised Final Landform and Capping Strategy -August 2009 - Revision 2, prepared by GHD (the Capping Strategy);
- 'Green and Golden Bell Frog Management Plan Kooragang Island Waste Emplacement Facility Closure Works' dated 19 April 2011 and prepared by Golder Associates;
- 'Materials Management Plan Kooragang Island Waste Emplacement Facility' dated November 2012 prepared by RCA Australia; and
- 'EPBC Referral Preliminary Documentation Package KIWEF Area 2 Closure Works' June 2018 prepared by Ramboll (the PDP).

The Surrender Notice also requires that the implementation of these plans and strategies to be validated through a report provided to the NSW EPA to allow the lifting of the Surrender Notice obligations. The summary of the measures required to be implemented and when are presented in Appendix B.

Further detail on the above documents has been incorporated into sub-plans prepared as part of this CEMF. These have been prepared based on requirements of the Surrender Notice, EPBC Act Referral outcome, Review of Environmental Factors, previously completed capping works and current industry practice to provide guidance on how to manage certain aspects of environmental management during construction.

The suite of action plans addressing priority environmental aspects includes the following:

- Appendix C. Materials Management Plan
- Appendix D. Flora and Fauna Management Plan

- Appendix E. Revegetation Management Plan
- Appendix F. Water Quality Management Plan
- · Appendix G. Traffic Management
- Appendix H. Air Quality Management
- · Appendix I. Noise Management
- · Appendix J. Heritage management

The Contractor is expected to be fully aware of the requirements of these sub-plans in preparing their tender and program and to be prepared such that extensive clearing and bulk excavation works on site do not commence prior to all required environment controls being in place for any given works area.

4.3 Environmental Control Plans or Maps

A Preliminary Environmental Control Map, reproduces Constraints Map prepared by SMEC, is provided below. This Preliminary Environmental Control Map is to be updated by the Contractor to address Contractor's specific work methods. The Environmental Control Map is to be specific to the site and outline the location of protection measures, monitoring requirements and environmentally sensitive areas. The Environmental Control Map forms the practical application of the proposed control measures contained within this CEMF.

The Environmental Control Map is to be used in project inductions, work site set-up, reviewing ongoing environmental performance and be included as information in tender documents to subcontractors where applicable.

The project Environmental Control Map is to be updated to include:

- The worksite layout and boundary, including entry/exit points and internal roads and clearing limits;
- · Location of adjoining land-use and nearest noise sensitive receivers;
- Location and type of sediment and erosion control measures, including size / capacity of detention basins and wheel wash facilities;
- · Location and type of fauna exclusion fences;
- · Location of site offices;
- · Location of spill containment and clean-up equipment;
- · Location of worksite waste management facilities;
- Hours of work applicable to the worksite (including specific time windows for deliveries and any restrictions on high noise generating activities).
- Location of environmentally sensitive areas (e.g. threatened species, critical habitat, known contaminated areas, etc)
- Vegetation and trees to be protected;
- Location of stormwater drainage and watercourses leading to / from the worksite; and
- Summary of specific environmental management requirements from licenses, approvals or permit conditions.

The provisions of this plan apply in addition to any erosion and sediment control plans or other documentation that specify the location of environmental controls on site.

4.4 Environmental Schedules

The Environmental Schedules set out below represent the records likely to be required to be kept during the Project.

- · Weekly and post rainfall site inspection checklist;
- · Daily materials tracking forms;
- · Level 2 and Level 3 notification forms;
- Notified materials tracking register;
- · Water quality monitoring results register;
- Dewatering form;
- · Waste Register;
- Induction record;
- · Internal Audit Register;
- · Non-Conformance Register;
- · Complaint Form; and
- · Complaint Register.

The form and content of the Environmental Schedules is to be provided by the Contractor in accordance with their Environmental Management System.

5. Monitoring, Reporting and Review

5.1 Environmental Monitoring

As part of the overall environmental management of the site, during the landfill closure works, the Contractor is to conduct at least weekly inspections of all mitigation measures. The results of these inspections will be recorded on a weekly environmental inspection record. Should non-conformances be identified, the Contractor is required to undertake corrective action to address the issue.

The following construction monitoring is required:

- Daily prestart checks on amphibian-disease hygiene station functioning and supplies, and weather forecast noting predicted wind and rain;
- Real-time classification of materials to nominated thresholds in accordance with the Materials Management Plan decision matrix;
- Post rainfall checks of sediment dam water level and water quality, and erosion and sediment control functioning;
- Inspection covering sediment dam water levels and water quality, erosion and sediment control structures, frog fences, fuel and chemical storage, stockpile bunding and covers;
- Sediment basin discharge or dewatering water quality sampling and analysis suitable to demonstrate pollution of water has/will not occur;
- noise monitoring of any out of hours construction works in accordance with Interim Construction Noise Guidelines;
- · visual observations of visible dust levels to confirm no off site dust impacts; and
- post capping defects and liabilities monitoring including revegetation success monitoring.

Where recommended actions are suggested, priorities should be set against these actions for site implementation. The list of actions should be distributed to the responsible personnel. A close out system must be included.

The defects and liabilities period is linked to a demonstration of performance against parameters to be negotiated with the HCCDC. These are likely to include revegetation success and surface water quality.

In accordance with notice of determination condition 11 and 12, accurate and complete compliance records are required to be maintained and provided to the Department of Environment and Energy on request.

5.1.1 Construction Water Quality Monitoring

The closure works are required to comply with the general duty not to pollute waters under section 120 of the POEO Act. The contractor will be required to take adequate precautions to ensure either that discharge/or dewatering is not required, or otherwise undertake sampling and analysis to demonstrate that pollution of water has or will not occur associated with water releases from sediment basins.

In the absence of an EPL, to avoid causing pollution and breaches of section 120, any water discharged from site must be of the same quality, or better, than the quality of the receiving waters (at the time of discharge) or able to be demonstrated to not have caused water pollution.

It is noted that water pollution or pollution of waters means:

- placing in or on, or otherwise introducing into or onto, waters (whether through an act or omission) any
 matter, whether solid, liquid or gaseous, so that the physical, chemical or biological condition of the waters
 is changed, or
- placing in or on, or otherwise introducing into or onto, the waters (whether through an act or omission) any refuse, litter, debris or other matter, whether solid or liquid or gaseous, so that the change in the condition of the waters or the refuse, litter, debris or other matter, either alone or together with any other refuse, litter, debris or matter present in the waters makes, or is likely to make, the waters unclean, noxious, poisonous or impure, detrimental to the health, safety, welfare or property of persons, undrinkable for farm animals, poisonous or harmful to aquatic life, animals, birds or fish in or around the waters or unsuitable for use in irrigation, or obstructs or interferes with, or is likely to obstruct or interfere with persons in the exercise or enjoyment of any right in relation to the waters, or
- placing in or on, or otherwise introducing into or onto, the waters (whether through an act or omission) any
 matter, whether solid, liquid or gaseous, that is of a prescribed nature, description or class or that does not
 comply with any standard prescribed in respect of that matter.

A summary of water quality monitoring including sample results is required to be submitted to the HCCDC following any dewatering or discharge event demonstrating that the Contractor has complied with the above obligations.

5.1.2 Environmental Auditing

Internal and external environmental audits should be undertaken throughout the construction process to ensure that the project environmental requirements and Contractors CEMP are implemented appropriately.

The auditing process should be designed to identify any non-conformances, providing an opportunity to apply corrective and / or preventative action where appropriate. The Audit schedule is to include:

- Internal environmental audit by the Contractor's Environmental Manager on a three monthly basis during construction;
- · Regular attendance at the site by the KIWEF Area 2 Closure Works Independent Auditor; and
- Independent audit of compliance with the notice of determination conditions following the completion of onsite construction works and prior to completion of the project works period.

5.2 Reporting

The implementation of the Closure Strategy and contract requires the following reporting on environmental performance:

- Daily record of material management including notification of identification of potential Level 2, Level 3 or otherwise hazardous materials;
- Monthly progress reporting;
- · Validation reporting following practical completion; and
- Annual compliance reporting against the notice of determination.

Detailed requirements of these reports are included in the Tender Specifications. The following summarises the expected content of each level of reporting.

5.2.1 Daily Record of Material Management

The daily record of material management is required to summarise material interaction for the day and include:

· Description of earthworks activity undertaken;

- · Description of cut to fill or cut to stockpile activities including locations;
- Notification of HCCDC of suspected contaminated or otherwise hazardous material encountered and description of handling, current location, further assessment required; and
- Summary of any handling of previously notified material including update on current location.

All notifications are also to be tracked through a notifications register to record final disposal location.

5.2.2 Monthly Progress Reporting

Monthly Progress Reporting is to include details of the implementation environmental management requirements including:

- Update on any environmental risks and opportunities, and significant environmental impacts associated with the work;
- · Progress against environmental objectives, targets and measures of performance; and
- · Management actions, including environmental controls, training, inspections and testing.

Specifically, the environmental monthly reporting is to include such items as:

- Characterisation, site management and fate of contaminated material, collated materials tracking information;
- · Quality assurance on placed material;
- · Non-compliances and corrective actions;
- Environmental monitoring requirements; and
- Monthly logs and photographs and other records of the progressive compilation of information that will be integrated into the Validation Report on completion.

5.2.3 Validation Report

The Validation Report is required to satisfy Condition 4h of the Surrender Notice which requires that there is written confirmation that the cap was established in accordance with relevant specifications as follows:

"Within three months of completion of the installation of the final cap, the licensee must provide the EPA with a written Validation Report that includes:

i) Advice that the final cap has been installed;

ii) Advice from a suitably qualified and experienced person as to whether or not the cap was installed in accordance with Chapter 7 of the Landform and Capping Strategy and relevant conditions of this Notice, or future variations to this Notice;

iii) Provision of the results of all relevant test results to validate that the permeability of the final capping layer is less than or equal to $K = 1 \times 10^{-7}$ m/s. Permeability testing must be taken of the sealing layer material at a rate of not less than 1 per 2000T (or 1250m³);

iv) Provision of information that establishes the thickness of the installed sealing and revegetation layers in the format of either:

- *(i)* As constructed drawings, including cross sections, of the surfaces of the coal washery reject layer; and
- (ii) The results of surveys undertaken for each capping layer by a registered surveyor".

The Contractor is to allow for all effort necessary to assemble adequate validation evidence throughout the implementation of the Closure Works and for the preparation of the validation report. For the avoidance of doubt, the Contractor is required to validate that the Closure works have been delivered in accordance with the design and Tender Specification in relation to capping parameters and the Materials Management Plan in relation to materials handling and tracking. The environmental performance expectations within this CEMF must be achieved as part of the Contract but are not required to be incorporated into the Validation Report. Evidence of compliance is to be available on request by HCCDC.

5.2.4 Annual compliance reporting

During the performance of the contract, and as a condition of satisfaction of the care and maintenance obligations, the Contractor will be responsible for the preparation of an annual compliance report against the conditions of the notice of determination.

5.3 Corrective Action

Non-compliance may be identified through routine weekly site inspections, impromptu site inspections, via the CEMF or CEMP review or audit process or be incident based.

Environmental non-conformance include:

- non-compliance with environmental management controls or mitigation measures specified within the CEMP;
- environmental incidents not threatening material harm to the environment; and
- environmental emergencies threatening material harm to the environment.

Corrective actions may be triggered by any of the above and will include immediate steps taken to control event, investigation and development additional controls to prevent recurrence. Corrective actions will be developed in consultation with the HCCDC and will be assigned to the appropriate staff for close out. All corrective actions will be tracked through to completion through the non-conformance tracking register.

All environmental non-conformances with project approvals, this EMP or Contractor procedures is to be recorded as an incident, investigated and closed out by the Contractor. Close-out is required to include Construction supervisor sign-off that corrective actions have been implemented or alternative solutions substituted. A summary of all non-conformances and associated corrective actions is to be provided to the HCCDC.

In addition to the above, incidents causing or threatening material harm to the environment are regulated under the POEO Act, which defines material harm under section 147, as follows:

- (1a) harm to the environment is material if
 - (i) it involves actual or potential harm to the health or safety of human beings or to ecosystems that is not trivial, or
 - (ii) it results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (or such other amount as is prescribed by the regulations), and

(1b) loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment;

(2a) it does not matter that harm to the environment is caused only in the premises where the pollution incident occurs.

The POEO Act requires incidents causing or threatening material harm to the environment to immediately notify the relevant authorities, which include:

- the EPA;
- · Newcastle Council;
- the Ministry of Health;
- the WorkCover Authority; and
- · Fire and Rescue NSW.

The POEO Act outlines responsibilities down to an individual level to notify incidents threatening material harm to the environment immediately. In general terms all individuals are responsible for reporting such incidents to the Construction Project Manager who in turn will inform HCCDC. HCCDC would then notify relevant authorities. It also requires that an individual notify the incident where they cannot make contact with their employer. Relevant authority contact details are included in the table below and should be displayed where all site workers can access them easily in the event of a notifiable incident occurring.

Table 1 Relevant Authority Contact Details

Contact	Phone Number
The EPA Environment Line	131 555
The Ministry of Health via the Public Health Unit	1300 066 055
SafeWork NSW	13 10 50
Newcastle City Council	02 4974 2000
Fire and Rescue NSW	000

Environmental incidents relating to the *Environmental Protection and Biodiversity Conservation Act 1999* must be notified to the Secretary of the Department of the Environment and Energy. Specifically, conditions 16 and 17 of the Notice of determination require the following:

16. The approval holder must notify the Department in writing of any: incident; non-compliance with the conditions; or non-compliance with the commitments made in plans. The notification must be given as soon as practicable, and no later than two business days after becoming aware of the incident or non-compliance. The notification must specify:

a. the condition which is or may be in breach; and

b. a short description of the incident and/or non-compliance.

17. The approval holder must provide to the Department the details of any incident or non-compliance with the conditions or commitments made in plans as soon as practicable and no later than 10 business days after becoming aware of the incident or non-compliance, specifying:

a. any corrective action or investigation which the approval holder has already taken or intends to take in the immediate future;

- b. the potential impacts of the incident or non-compliance; and
- c. the method and timing of any remedial action that will be undertaken by the approval holder.

5.4 **CEMF** Review

This CEMF forms the basis on which the contractor's CEMP should be prepared and as such is to be reviewed/adapted or superseded based on the contractor's specific work methods and approach to environmental management. The Contractor's CEMP should be reviewed in accordance with the requirements of their environmental management system but should also be reviewed during implementation as and when required, including when the following situations arise:

- · Client recommendations for changes (particularly following initial review);
- · Opportunities for improvement or deficiencies in the project system are identified; or
- Following an audit of the system or the occurrence of significant incidents and non-conformances.

Appendix A. Legislative requirements

Legislation and administering authority	Requirement	Application to Closure Works
Environment Protection and Biodiversity Conservation Act 1999 Commonwealth Department of the Environment and Energy	The relevant objective of the Act is to provide for the protection of the environment, especially those aspects of the environment that are matters of national environmental significance. A project may be defined as a controlled action under the Act due to impacts on matters of national environmental significance.	The Project was determined to be a Controlled Action due to potential impacts to the identified key population of Green and Golden Bell Frogs and associated impacts to the ecology of the Hunter Estuary Ramsar wetland should this population be threatened. The project was approved by the Commonwealth on 22 March 2019 on the basis of the preliminary documentation provided by HCCDC. Conditions of determination have been issued and are incorporated into this CEMF. Notwithstanding anything else within this CEMF and the contract documents, the Contractor is responsible for understanding and complying with the Conditions of determination.
Environmental Planning and Assessment Act 1979 Department of Planning and Environment	Encourages proper environmental impact assessment and management of development areas for the purpose of promoting the social and economic welfare of the community and a better environment.	The Project was assessed and determined under the former Part 5 (now referred to as Division 5.1) of the EP&A Act and found unlikely to significantly impact the environment subject to the implementation of a range of mitigation measures contained within the assessment documentation. These mitigation measures have been incorporated into this CEMF.
Protection of the Environment Operations Act 1997 Environment Protection Authority (EPA)	The relevant objective of the Act is to prevent environmental pollution.	The Project is regulated under the POEO Act through the Surrender Notice but does hold a current Environment Protection Licence (for activities listed under Schedule 1). In addition to complying with the conditions of the surrender notice the general duties to prevent air/ noise/ water pollution and manage waste correctly do apply. It is the contractor's obligation to undertake works in accordance with the surrender notice and in a manner that prevents pollution. Further, the Contractor is the occupant of the site under the POEO Act (as per HCCDC18/04 contract).
Contaminated Land Management Act 1997 NSW EPA	The Act provides a process for the investigation and remediation of land where contamination presents a significant risk of harm to human health or some other aspect of the environment.	While the site is known to contain contamination it is not currently regulated under this Act as it is regulated by the EPA through the POEO Act and it is not the intention of the EPA to regulate the same site under both Acts concurrently. It is the contractor's obligation to manage contaminated materials in accordance with the

Legislation and administering authority	Requirement	Application to Closure Works
		Materials Management Plan such that contaminated materials encountered is appropriately managed to avoid exacerbation and such that the fate of such material is documented.
Dangerous Goods (Road and Rail Transport) Act 2008 EPA / SafeWork NSW	A licence is required for the storage (SafeWork NSW) and /or transport (EPA) of prescribed quantities of dangerous goods.	The Contractor is required to ensure that the transport and storage of dangerous goods exceeding licensable quantities is lawfully undertaken.
Environmentally Hazardous Chemicals Act 1985 EPA	Management of Environmentally Hazardous Chemicals.	Should any material generated or encountered at the site contain chemicals that are the subject of NSW's five (5) current Chemical Control Orders (CCO), then the material will need to be managed in accordance with that CCO.
		Current CCO include:
		 Chemical control order in relation to aluminium smelter wastes containing fluoride and/or cyanide (1986)
		Chemical control order in relation to dioxin- contaminated waste materials (1986)
		 Organotin waste materials chemical control order 1989
		 Polychlorinated biphenyl (PCB) chemical control order 1997
		Scheduled chemical wastes chemical control order 2004.
Heritage Act 1977 NSW Office of Environment and Heritage (OEH)	The Act aims to encourage the conservation of the State's heritage and provides for the identification and registration of items of State heritage significance.	Not expected to impact any items on the State Heritage Register (SHR). Should the project unexpectedly find any heritage artefacts, the relevant notifications and management actions may need to be taken.
National Parks and Wildlife Act 1974 OEH	The objectives of the Act are for the conservation of nature and the conservation of objects, places or features (including biological diversity) of cultural value within the landscape.	The proposal would not affect any area declared as a National Park, historic site, nature reserve or Aboriginal area nor would it impact any historic Aboriginal object or place, threatened species, population or endangered ecological community. The potential exists for unexpected objects to be found of significance to Aboriginal people. The Chief Executive of the OEH is the authority responsible for the protection of all Aboriginal objects and places in NSW, whether they are on national park estate or not.

Legislation and administering authority	Requirement	Application to Closure Works
Threatened Species Conservation Act 1995 OEH	Provides for the protection of any threatened species on-site.	Impacts to Threatened Species are assessed through the REF and mitigation measures to prevent significant impacts are incorporated into this EMP. Any unexpected species encountered during construction may require further assessment.
Biodiversity Conservation Act 2016 OEH	The purpose of this Act is to maintain a healthy, productive and resilient environment for the greatest well-being of the community, now and into the future, consistent with the principles of ecologically sustainable development. The BC Act commenced on 25 August 2017 repealing the <i>Threatened Species Conservation</i> <i>Act 1995</i> (TSC Act).	The proposal would be considered a pending Part 5 assessment if it commences within 18 months of August 2017. Under Clause 29 of the BC (ST) Regulations, the former planning provisions continue to apply (and Part 7 of the new Act does not apply) to a pending Part 5 assessment, with the former planning provisions defined as the provisions of the EP&A Act that would be in force if that Act had not been amended by the BC Act and which call-up guidelines established under the TSC Act.
Biosecurity Act 2015 OEH	The primary object of this Act is to provide a framework for the prevention, elimination and minimisation of biosecurity risks which includes the management of plant and animal pests.	 The following pests are known to be present on site and will require appropriate management Bitou Bush (Chrysanthemoides monilifera subsp rotundata), Crofton Weed (Ageratina adenophora); Pampas Grass (Cortaderia selloana). African Olive (Olea europaea), Lantana (Lantana camara); and Groundsel Bush (Baccharis halimifolia). In accordance with the Act all plants are regulated with a general biosecurity duty to prevent, eliminate or minimise any biosecurity risk they may pose. Any person who deals with any plant, who knows (or ought to know) of any biosecurity risk, has a duty to ensure the risk is prevented, eliminated or minimised, so far as is reasonably practicable. Surrounding ponds are also populated by Mosquito Fish (<i>Gambusia Holbrooki</i>) and the works are required to avoid any transfer or connection of water bodies that could lead to their spread.
Water Management Act 2000 Department of Lands - Water	The relevant objective of the Act is to protect, enhance and restore water sources, their associated ecosystems, ecological processes and biological diversity and their water quality.	Clause 38 or the Water Management (General) Regulation 2011 provides that a public authority is exempt from section 91E (1) of the WM Act in relation to all controlled activities that it carries out in, on or under waterfront land. As such a

Legislation and administering authority	Requirement	Application to Closure Works
State Environmental Planning Policy (Three Ports) 2013 Department of Planning and Environment	The aim of this Policy is to provide a consistent planning regime for the development and delivery of infrastructure on land in Port Botany, Port Kembla and the Port of Newcastle.	controlled activity approval is not required for the proposed activity. The water within the fill aquifer is not considered to occur naturally, no use of water in surface water bodies is proposed and no use of other naturally occurring water sources is proposed and as such a water use approval is not deemed necessary. The proposed works do not include aquifer interference and it is understood that the Aquifer interference requirements of the Act are yet to commence and as such aquifer interference approval is not deemed necessary. The closure works are within the land application area and Lease Area and Environmental Management Works / Environmental Protection works are permissible without consent in the Three Ports Lease Area. The Project has been assessed under the former Part 5 (Division 5.1) of the EP&A Act
State Environmental Planning Policy 55 Department of Planning and Environment / Council	The object of this Policy is to provide for a Statewide planning approach to the remediation of contaminated land.	 (refer above). While the closure works also meet the definition of remediation works under this policy, the Three Ports SEPP prevails to the extent of any inconsistency. Clause 8 (4) requires that a person who carries out a remediation work must ensure that the Council notification requirements of clause 16, 17 and 18 are complied with in relation to the work. Notification of Council required 30 days in advance of commencement of Category 2 remediation. Notification of Council following completion.
State Environmental Planning Policy (Coastal Management) 2018	 The aim of this Policy is to promote an integrated and co-ordinated approach to land use planning in the coastal zone in a manner consistent with the objects of the Coastal Management Act 2016, including the management objectives for each coastal management area, by: managing development in the coastal zone and protecting the environmental assets of the coast, and 	The closure works area is surrounded by, but does not include, land mapped as coastal wetlands. Parts of the closure works area are mapped as proximity area for Coastal Wetlands, Coastal Environment Area and Coastal Use Area. Importantly, the closure works area is within the Lease Area under the Three Ports SEPP and the Coastal Management SEPP does not apply through the workings of Clause 7 of the Coastal Management SEPP.

Legislation and administering authority	Requirement	Application to Closure Works
	 establishing a framework for land use planning to guide decision- making in the coastal zone, and mapping the 4 coastal management areas that comprise the NSW coastal zone for the purpose of the definitions in the Coastal Management Act 2016. 	
<i>Newcastle Local Environment Plan</i> Newcastle Council	This Plan aims to make local environmental planning provisions for land in the City of Newcastle in accordance with the relevant standard environmental planning instrument under the EP&A Act.	While located within the Newcastle Local Government Area the site is not located on land to which the <i>Newcastle Local Environmental</i> <i>Plan 2012</i> (NLEP) applies.

Appendix B. Environmental Obligation Interface

Sequence of Work Activities	Controls/Mitigation Measures	Primary Responsible
Tender and award	 Establish all required approvals under EPBC Act and EPA Act. Finalise Closure Works design to comply with approvals. Integrate above requirements into CEMF and Tender Specifications. Scheduling works to the extent possible to occur outside of the core GGBF breeding period (that is, September to March), especially in areas adjacent to known and potential breeding habitat. 	State. Contractor responsible for review of approvals in place and obtaining any additional necessary approvals.
Peninsular / Wedge Access	 Complete access upgrade design to accommodate Contractor equipment in agreement with ARTC. 	Contractor in consultation with ARTC
Pre-earthworks monitoring and ongoing EPL Surrender Notice monitoring.	 Update relevant GGBF abundance survey data and water level and salinity logger data. Undertake annual surface and groundwater monitoring as per EPL Surrender notice. 	State Contractor to facilitate access through Closure Works Area as required.
Auditor oversight	 Undertake all necessary site inspections, provide input into materials management decision making to allow auditor sign-off of Closure Works completion. 	State to appoint auditor. Contractor to facilitate access and provide validation information as requested by Auditor.
Site Establishment	 Implement hygiene protocol as required for the closure works area (NSW Threatened Species Management Information Circular No.6 (April 2008)). Establish any controls necessary to prevent works from occurring outside the referral boundary. Temporary frog exclusion fencing to surround the Closure Works site and ensure GGBF habitat protected from unauthorised access prior to works commencing in those works areas or their parts. Conduct pre-clearance surveys by a qualified ecologist in week prior to works commencing in works areas or their parts. Apply erosion and sediment controls as per sensitive environments (Managing Urban Stormwater – Soils and Construction (Landcom 2004)) and complete and line permanent basins as per designs provided by the State. 	Contractor

Sequence of Work Activities	Controls/Mitigation Measures	Primary Responsible
	 Prepare stockpile area with adequate space for 'topsoil' level 1, 2 and 3 material and erosion and sediment controls as per ESCP and Materials Management Plan (RCA Australia 2012). 	
	 Level 2 and level 3 stockpile areas are to be lined in accordance with materials management plan (RCA Australia 2012) as necessary. 	
	 Store all hazardous liquids and chemicals in covered, bunded areas with capacity to retain 110% of largest container in the event of a spill. Proprietary available spill mats, drip trays and pallets can be used as appropriate. 	
	 Provide fully stocked spill kit/s and ensure that operators are aware of the location of these kits and are trained in their use. 	
Bulk earthworks	 Undertake weed management in advance of broad scale clearing and bulk earthworks. 	Contractor
	• Win and transport site derived capping and land forming materials.	
	 Use of imported capping material assessed as having a low risk of containing Chytrid Fungus. 	
	 Use of revegetation medium materials demonstrated to be low in nutrients and assessed as having a low risk of containing Chytrid Fungus. 	
	 Works are to be staged to reduce area of exposure and minimise dust, infiltration and sediment laden run-off. 	
	 Qualified ecologist to be available on call during earthworks in the event that any GGBF individuals are encountered during works, the ecologist must be called in to capture and relocate the individuals. 	
	 Materials will be managed in accordance with the approved Materials Management Plan and GGBF management plan within each area and no transport of fill, capping or topsoil between areas is to occur. 	
	 Strip topsoil to a minimum of 100mm following material management plan decision matrix for suitability for re-use. 	
	 Topsoil to be stored separately in prepared stockpile areas as per detailed design documentation. 	
	 Stockpiles to be stored for long periods are to be wrapped, covered, re-seeded or wet to minimise dust generation. 	
	 Cut to base of excavations as per detailed design documentation insuring minimum 1% grade. Cut material to be used as fill and capping in accordance with materials management plan decision matrix. 	
	 The final surface of both capped and uncapped areas will be protected by a vegetative layer. The extent of the revegetation will depend on the proposed site use (i.e. undeveloped, commercial development or habitat areas). 	

Sequence of Work Activities	Controls/Mitigation Measures	Primary Responsible
	The use of imported topsoil is to be avoided where possible.	
	 Upon completion of the works, the works areas must be rehabilitated in accordance with Rehabilitation Management Plan. 	
	 Dispose of materials unsuitable for reuse in accordance with materials management plan. 	
	All waste to be removed upon completion.	
	 Upon completion, site facilities, frog exclusion fencing and security fencing shall be removed as necessary. 	
	 Non-permanent erosion and sediment controls are to remain in place until they are no-longer required. 	
	 Sediment basins and drains will remain in place as landscape features until they are no longer required. 	
	 Refuelling is not to occur in the vicinity of sediment dams, drainage lines or water bodies. 	
	 Refuel plant using drip trays/spill mats and other spill containment devices. 	
	 Store all hazardous liquids and chemicals in covered, bunded areas with capacity to retain 110% of largest container in the event of a spill. Proprietary available spill mats, drip trays and pallets can be used as appropriate. 	
	 Do not leave chemical containers open outside or inside of the bunded areas. 	
	 Provide fully stocked spill kit/s and ensure that operators are aware of the location of these kits and are trained in their use. 	
	 Spills are to be immediately contained and absorbed using materials provided in the spill kit. 	
	 All personnel are to be trained in the appropriate use and disposal of spill kit materials. 	
Construction Monitoring	 Daily prestart checks on amphibian disease hygiene station functioning and supplies and weather forecast noting predicted wind and rain. 	Contractor
	 Real-time classification of soils to nominated thresholds in accordance with the Materials Management Plan decision matrix. 	
	 Post rainfall checks of sediment dam water level and water quality and erosion and sediment control functioning. 	

Sequence of Work Activities	Controls/Mitigation Measures	Primary Responsible
	 Weekly site inspection checklist covering sediment dam water levels and water quality, erosion and sediment control structures, frog fences, fuel and chemical storage, stockpile bunding and covers. 	
	 Pre-discharge physical water quality condition (temperature; dissolved oxygen; pH; electrical conductivity (EC)) and chemical water quality condition in sediment dams. 	
	 Noise monitoring of any out of hours construction works in accordance with interim construction noise guidelines. 	
	 Reference to available PWCS/NCIG dust monitoring results to determine off site dust levels. 	
Defect Liability period	 Check and maintain the erosion and sediment controls regularly, especially after rainfall, to ensure that they remain effective including: 	Contractor
	 Collected sediment is to be removed from the controls as necessary to ensure they remain effective. 	
	 Collected sediment is to be combined with planting medium for reuse on the site – if appropriate. 	
	 All vehicle wheels, tracks and undercarriages must be cleaned prior to exiting the site and travelling on public roads. 	
	 Three month vegetation maintenance program to include, watering, weeding as appropriate but excluding the use of fertilisers and pesticides and herbicides. 	
	 Pre and post discharge surface water monitoring in sediment dams and receiving waters. 	
	 Revegetation monitoring and maintenance to ensure adequate cover. 	
	Preparation of an annual compliance report against the conditions of the notice of determination.	

Appendix C. Materials Management Plan

Hazardous / Contaminated Material	
Objective	To comply with legislative requirements and ensure that hazardous / contaminated material from construction activities does not cause an environmental nuisance / harm and is handled, categorised, tracked and placed in accordance with the RCA (2012) Materials Management Plan.
Targets	No exacerbation of contamination during construction
	No environmental incidences involving contaminated/ hazardous materials
	No pollution events of the surrounding environmental and water ways by contaminated material
	The movement and ultimate fate of materials is fully tracked
Key Documents	State Documents
	NSW EPA (2010), Approval of the Surrender of a Licence – License 6437, (Ref: 1111840, and as varied by notice number 1510956 and 1520063)
	GHD (2009), Report on KIWEF, Revised Final Landform and Capping Strategy (Ref: 22/14371/85882 R4)
	RCA (2012) 'Materials Management Plan - Kooragang Island Waste Emplacement Facility' dated November 2012.
Material Classification	Level 1 material is any material not exhibiting characteristics indicative of other categories.
	 Level 2 material is identified as material with any of the following characteristics: strong hydrocarbon odour, ammonia odour, asbestos containing material, evidence of PCB impact (dark staining and phenolic odour), materials with an average concentration of >2,000 mg/kg PAH or material represented by individual PAH concentration >2,500 mg/kg. Level 3 material is material containing Separate Phase Hydrocarbons.
Mitigation Measures and Controls	The following is generally reproduced from RCA (2012).
Contaminated material identification and management	The Contractors Materials Management Plan is to be adequate to ensure that material management is undertaken in accordance with RCA (2012) in addition to meeting the performance expectations of the Contract Specifications and this CEMF.
	The Contractors Materials Management Plan is to incorporate a protocol for identification and management of Contaminated Materials that is to include the following:
	Appropriate resourcing for real-time supervision of all ground disturbance activities by a suitably qualified and environmental practitioner;

Hazardous / Contaminated Material	
	Stop work requirements (localised) if any soils are encountered which have distinguishing Level 2 or Level 3 characteristics.
	Characterising and delineated Level 2 and Level 3 materials in-situ or at the place of storage following excavation including input from occupational hygienist or other appropriately qualified specialist (Contractor's Specialist) to identify the substance.
	Consultation with third party advisors, the State and the auditor to confirm management expectations.
	All contaminated material encountered during the landfill closure works will be assessed and categorised in accordance with RCA (2012).
	All material is to be adequately tracked such the that the composition and location of all Level 2, Level 3 and asbestos waste fate is documented and able to be validated.
	Uncovering of suspected level 2, level 3 or otherwise hazardous material requires the following steps to be undertaken:
	Immediately cease work and contact the Site Supervisor
	Demarcate the 'unexpected find' to prevent access and install appropriate environmental and safety controls.
	Follow the management steps specified below in relation to each material classification; and
	If substance is assessed as level 1 material not presenting an unacceptable risk to human health the Site Supervisor to remove controls and continue work.
Level 1 Material management	There is no specific management required for Level 1 material on the site and Level 1 material has unrestricted onsite re-use classification (Section 5.6.1 of RCA 2012). Level 1 material may be used for:
	Topsoil where sourced from top 100mm of existing landform;
	General land forming;
	Buffer material to be placed above Level 2 and Level 3 Material;
	Interim bunding for stockpiled material; and
	Site capping material.
	Level 1 material properties are to be validated in accordance with the Tender Specifications for testing and analysis.
Level 2 Material management	Level 2 material is designated as having restricted site use and where encountered is to be managed as follows:
	Where suspected Level 2 soils are encountered then the nature and extent of the materials should be validated by laboratory testing to assess whether the materials are still to be classified as Level 2 or Level 3 materials.
	If Level 2 material is encountered but is to remain in place and will have sufficient cap (ie >500mm), the vertical extent does not need to be validated.

Hazardous / Contaminated Material	
	The Contractor is to develop a notification detailing material type, location, estimated quantity and potential contaminants.
	The Contractor is to notify the State or its representative within 24 hours of encountering Level 2 material.
	Level 2 material may be relocated to a lined and covered short-term stockpiling or skip-bin for further quantification, characterisation and categorisation.
	Confirmed Level 2 contaminated material is to be isolated by covering with at least 500mm of Level 1 material, plus 500 mm of cap with preference for material to be left in situ provided there is no immediate risk to the environment or community or otherwise be relocated to an on-site location.
Level 3 Material Management	Level 3 material is designated as having restricted site use and must managed as follows:
	The Contractor is to develop a notification detailing material type, location, quantity and potential contaminants.
	The contractor is to notify the HCCDC as soon as possible and on the day the material is encountered.
	HCCDC will then notify the EPA;
	 Level 3 material may be relocated to a lined and covered stockpile or skip bin for further characterisation and categorisation and while a decision is made by HCCDC on the preferred manner of ultimate disposal.
	The HCCDC will provide direction as to the required treatment of Confirmed Level 3 contaminated material which may include:
	Isolated by covering with at least 1000mm of Level 1 material, plus 500mm of cap with preference for material to be left in situ provided there is no immediate danger to the environment or community or otherwise be relocated to an on-site location with the area having appropriate controls in place; or
	Transported off-site for disposed in a legal manner.
Asbestos Management	Asbestos materials (and ACM) should be managed generally as follows as specified in RCA MMP (2012):
	 Where at all possible, materials containing bonded asbestos wastes would be fully delineated, be assessed to be at least 1m below final capping, and remain as undisturbed materials managed by in-situ containment;
	 Should any fill materials containing bonded asbestos wastes require excavation as they are not in-situ more than 1m from the final cap in the earthworks, then consideration would be given to removing the materials and emplaced at a depth of 1m;
	Friable asbestos would be assessed and considered for emplacement at a depth of 2.5m below the underside of the capping layer within a purpose built excavation at a location to be agreed with HCCDC;
	Final location of any asbestos discovered shall be thoroughly documented including accurate survey of the emplacement area;

Hazardous / Contaminated Material	
	Where asbestos waste is found in fill that also contains volatile organic compounds or separate phase hydrocarbons, appropriate treatment for recorded contaminants will be required; and
	 All asbestos is to be managed and handled in accordance with the recommendations of an appropriately licensed Asbestos Assessor/handler.
	The use of in-situ or ex-situ treatment approach for any materials containing bonded and friable asbestos wastes will be assessed on a case by case basis in relation to volume and risk to human health.
Other waste management	Minimal volumes of material requiring off-site disposal have been encountered in previous stages of KIWEF closure works. In the event that such material is encountered it will be classified in accordance with the Waste Classification Guidelines (2015) and disposed of to a landfill legally able to accept the waste. Wastes generated in completing the capping works are also required to disposed of off-site.
	All other contaminated materials will be managed on site in accordance with the Materials Management Plan.
	Waste management measures to be implemented include:
	Licensed waste contractors will be utilised to remove waste.
	All waste is to be disposed of at a lawful facility (Note: A lawful facility includes one that has the appropriate Development Consent, Environment Protection Licence or is complying with EPA approved conditions and requirements).
	Waste must be classified prior to disposal – refer to NSW EPA Waste Classification Guidelines (2015).
	Records of the quantity and final locations of all on and offsite waste will be maintained
	Provision of skip bins (or equivalent) to be used to collect all general wastes generated during the works.
	Provide an adequate number of skip bins on site to contain all general waste generated throughout the works.
	Provide bins to enable waste segregation
	Provide recycling services (e.g. Paper, Concrete, Steel, Cardboard, Timber).
	Ensure housekeeping is maintained and waste is disposed of to the appropriate bin.
	Retain waste disposal permits and figures on the amount of waste that has been removed from site.
Monitoring & Reporting	Real-time Supervision - Real-time observation of all ground disturbances by a suitably qualified environmental practitioner to identify and manage suspected contaminated material.
	Sampling and analysis of material properties for categorisation and validation purposes in accordance with the tender specifications.
	The daily record of material management is required to summarise material interaction for the day and include:
	Description of earthworks activity undertaken;

Hazardous / Contaminated Material	
	Description of cut to fill or cut to stockpile activities including locations;
	 Notification to HCCDC of suspected contaminated or otherwise hazardous material encountered and description of handling, current location, further assessment required; and
	Summary of any handling of previously notified material including update on current location.
	All notifications are also to be tracked through a notifications register to record final disposal location.
	Monthly Progress Reporting is to include details of the implementation environmental management requirements including:
	· Update on any environmental risks and opportunities, and significant environmental impacts associated with the work;
	Progress against environmental objectives, targets and measures of performance; and
	Management actions, including environmental controls, training, inspections and testing.
	Specifically, the environmental monthly reporting is to include such items as:
	· Characterisation, site management and fate of contaminated material, collated materials tracking information;
	Quality assurance on placed material;
	non-compliances and corrective actions;
	environmental monitoring requirements; and
	 monthly logs and photographs and other records of the progressive compilation of information that will be integrated into the Validation Report on completion.
	A Validation Report is required to satisfy Condition 4h of the Surrender Notice which requires that there is written confirmation the cap was established in accordance with relevant specifications.
Actions	The Contractor's CEMP is to include specific procedure for monitoring, management and documentation of materials management suitable for implementation to achieve the intent of the Materials Management Plan and Surrender Notice under the Contractors specific construction methodology.
Responsibilities	The Contractor is to ensure that appropriate resources and processes are in place and that appropriate records are kept to allow validation that materials have been managed in accordance with the Surrender Notice.
Timeframe	Duration of site activities where works may encounter potentially contaminated fill materials.

Appendix D. Flora and Fauna Management Plan

Flora and Fauna	
Objective	To comply with contractual and legislative requirements and ensure that native fauna and flora are protected from construction activities.
Targets	No death or injury to fauna including the Green and Golden Bell Frog No unapproved destruction of flora
Legal, Contractual & Other Requirements	Environmental Protection and Biodiversity Conservation Act 1999 Threatened Species Conservation Act 1995 (repealed) Biodiversity Conservation Act 2016 (Transitional Arrangements).
Site specific planning / approval conditions / licence conditions	State Documents NSW EPA (2010), Approval of the Surrender of a Licence – License 6437, (Ref: 1111840, and as varied by notice number 1510956 and 1520063) Golders (2011), KIWEF Closure Works, Green and Golden Bell Frog Management Plan (Ref: 117623029-001-R-Rev0) Jacobs (2018) Addendum Review of Environmental Factors, KIWEF Area 2 Closure Works Commonwealth Documents Ramboll (2018), EPBC Referral, Preliminary Documentation Package – KIWEF Area 2 Closure Works (Ref: 318000395)
General Flora and Fauna Mitigation Measures and Controls	 General mitigation measures to be considered include: Adequate run-off, erosion and sedimentation controls should be in place during construction, particularly in areas where run-off has the potential to impact on nearby waterways, surrounding native vegetation, EEC regrowth, and existing drainage line and dam areas. Care should be taken that any noxious weeds occurring on the site are not further dispersed as a result of the Proposal. A follow up Weed Control Program may be necessary to control the encroachment of these species into surrounding areas. The landowner has a legal responsibility to control and suppress these species on their property under the <i>Noxious Weeds Act 1995</i>. The Weed Control Program should be remove weeds by physical means and avoid the use of herbicides. Stockpiling of soil that may contain seeds of exotic species shall be stockpiled away from adjacent vegetation or drainage lines where they could be spread during rainfall events. Placement of soil stockpiles away from vegetated areas. Utilising existing disturbed corridors such as cleared areas, roads, tracks and existing easements, where possible for set up of equipment, stockpile areas and site facilities.

Flora and Fauna	
	• Noxious weeds to be managed in accordance with the expectations under the <i>Biosecurity Act 2018</i> . It is recommended that the plants be removed by physical removal, as herbicides may impact GGBFs and their habitat.
	Open excavations and storage areas to be inspected regularly for the presence of fauna species.
	Plant and equipment brought on to site must be cleaned and free of deleterious material, mud and other material that may harbour weed seeds
	Proposed hours of construction are to be maintained to restrict noise and light impacts on nocturnal fauna.
	Utilise an onsite ecologist during construction to re-locate any native fauna which may be displaced.
	Avoid rubbish and other waste build up to deter feral animals.
	• Habitat features such as woody debris that may be utilised by fauna within the construction area would be retained and set-aside during the construction period for reinstatement at completion of works.
	 Any water required for dust suppression will be drawn from ponds established for the purpose. No water for dust suppression will be drawn from existing ponds on the site. The establishment of dedicated dust suppression ponds will be undertaken to prevent the potential spread of Plague Minnow into ponds currently free of this species. The location and procedure for those dedicated dust suppression ponds will be communicated during the site induction and training.
	No night works are permitted without additional assessment of potential noise and light impacts.
	Lighting of site compounds, if required for safety and security, will avoid light spill outside of the construction works footprint and will be undertaken in accordance with Australian Standard 4282—1997 Control of the obtrusive effects of outdoor lighting.
GGBF Management	GGBF impact avoidance is to be based on the following:
	• Establishment and use of Chytrid Hygiene procedures such that the Chytrid fungus is not brought to site or transferred between areas of the site;
	• Appropriate levels of GGBF pre-clearance/disturbance surveys and relocation to ensure to the extent possible that direct disturbance areas are free of GGBF on commencement of works in each area;
	Establishment of GGBF exclusion fencing such that the risk of GGBF re-entering surveyed areas is prevented;
	• Establishment of clear boundaries of works areas such that unnecessary disturbance is avoided, particularly adjacent to existing ponds;
	Establishment of appropriate erosions and sediment controls to prevent sedimentation and pollution of waters;
	 Implementation of GGBF risk consideration to all decision making such that unintended consequences to GGBF can be avoided. This includes in considering suitability of imported materials from a Chytrid risk and nutrient perspective and use of chemicals including flocculants, herbicides and pesticides; and
	Rehabilitation using species preferred by GGBF (refer to rehabilitation management plan).

Flora and Fauna	
Chytrid Fungus hygiene protocol	A Chytrid Hygiene procedure in accordance with the NSW Threatened Species Management Information Circular No.6 – Service Hygiene Protocol for the Control of Disease in Frogs (April (2008) or most recent revision of that document, must be implemented on the Closure Works site during all works and any other activities undertaken as part of the action. This procedure is to include:
	Dedicated disinfection bays established at site entry and all vehicles required to enter via this bay;
	All disinfection processes will be monitored and controlled at the Closure Works entry point;
	• The location of these disinfection bays, and the obligations of disinfection, will be communicated during the site induction and training;
	Cleaning and disinfection of workers boots upon entry and exit from the site;
	Procedures will be implemented to inspect mobile plant entering the Project site during construction activities to control soil and/or organic matter and to disinfect tyres and wheels of vehicles entering the Project site; and
	Vehicles arriving at site muddy will be sent away for more intensive cleaning prior to disinfection.
Chytrid Fungus Risk Assessment Process	The contractor is to demonstrate that suitable risk assessment has been undertaken by an appropriately qualified and experienced ecologist on all imported capping and revegetation materials to demonstrate that it contains a low risk of containing Chytrid. Risk assessment should consider as a minimum:
	Material not sourced from known, suspected or likely amphibian habitat areas;
	Material unlikely to have had contact with amphibians and no amphibians present in material; and
	Material are not to be stored in, or come in contact with material sourced from, areas of known, suspected or likely amphibian habitat prior to transport.
Pre-clearance survey design and clearance methodology.	The Contractor will be responsible for developing a pre-clearance survey and clearing methodology suitable for implementation with the contractors specific construction methods that minimises potential harm to GGBF species. The survey methodology should give consideration to the following factors:
	Level of effort warranted in different areas and habitats;
	Seasonal factors on GGBF use of habitat; and
	Need for night time surveys.
	Survey effort required is likely to include:
	 Targeted active searches of potential GGBF habitat located within the disturbance footprint;
	 Conducted to minimise disruption of breeding activities: relocated tadpoles or metamorphs;
	Be conducted in accordance with hygiene protocol;

Flora and Fauna	
	Habitat resources including all wet areas as well as rocks, logs, tussock forming vegetation, and other cover will be searched during diurnal visual inspections.
	• A nocturnal habitat search including visual search, spotlighting and call playback may be conducted to assess nocturnal use (breeding/calling) in the habitat supported in disturbance area, if the surveys are conducted during core breeding season (spring/summer);
	 Any GGBF observed within the disturbance footprint will be relocated in accordance with relocation procedure provided in the GGBF Management Plan prior to commencement of disturbance; and
	The survey methodology implemented should allow the qualified and experienced ecologist to confirm that the risk of GGBF mortality has been reduced to the extent reasonable and feasible for the applicable habitat type/area.
	The clearing methodology should include the following:
	Consideration of most appropriate time to install frog exclusion fences;
	Presence of an appropriately qualified and experienced ecologists during clearing;
	Gradual degradation of higher risk habitat areas progressing from areas furthest away from pond towards areas of refuge;
	Relocation of cleared vegetation to areas away from immediate works that allow remaining amphibians to escape; and
	Ability to open amphibian fences during clearing at key times to allow fauna to escape.
Amphibian Relocation	If any frog specimens thought to be a GGBF are observed and are within project disturbance area the following relocation procedure will be implemented:
	Observer to notify Site supervisor who in turn is to notify the HCCDC, a suitably qualified ecologist, and the Contractor's supervisor of the frog's location immediately;
	Contractor supervisor to halt work in the immediate vicinity to prevent accidental interaction with the frog;
	The ecologist or HCCDC's environmental representative will determine whether the frog is likely to be harmed by works or is likely to migrate to an area that it could be harmed;
	 If likely to be harmed by works the GGBF will be captured by the ecologist or suitably trained frog handler following GGBF handling and Hygiene procedures;
	A one frog per bag policy will be observed with disinfection of all equipment undertaken immediately following any contact with frogs of any description;
	If healthy the frog will be held in a cool, dark, moist place until nightfall before being released to a suitable location in the immediate vicinity of capture but outside the disturbance footprint;

Flora and Fauna	
	 GGBF showing Chytrid symptoms and deemed unlikely to survive transportation will be euthanized and preserved prior to dispatch to a designated sick or dead frog recipient in accordance with Appendix 2 of the National Parks and Wildlife Service's Hygiene protocol for the control of disease in frogs (NPWS, 2008);
	If deemed likely to survive transportation GGBF will be placed in a damp cloth bag or partially inflated plastic bag with leaf litter;
	 Dead frogs will be preserved in accordance with the approved GGBF management plan including cutting open stomach and preserving in 10 times the volume of the specimen of 65% ethonol or 10% buffered formalin
	The designated sick or dead frog recipient will be contacted prior to transport to confirm appropriate procedures;
	Containers used for storing frogs will be labelled with date, location and species if known; and
	A standardised collection form must be completed and a copy sent with the specimen.
Actions	The contractors CEMP is required to establish the actual pre-clearance and clearance methodology, exclusion fence designs and Chytrid Risk assessment and documentation proposed.
Responsibilities	Contractor's Ecologist is responsible for ensuring risks to Fauna is minimised to the extent reasonable and feasible.
	Contractor's Project Manager is responsible for allowing sufficient time within program to conduct pre-clearance and clearance in a manner that maximises survival of GGBF and other fauna following the advice of the Ecologist.
	Contractor is responsible for notifying the Principal of any sick or dead GGBF.
	All personnel are responsible for ensuring that the clearing limits are addressed and native flora and fauna species are protected.
	All site personnel to undertake toolbox talks in relation to the reporting process for injury/ death to fauna or clearing of flora occurring beyond the required limits for construction.
Timeframe	Duration of the works.
Monitoring & Reporting	Daily visually monitoring by site supervisors for obvious signs of fauna and the functioning of controls including fences and Chytrid hygiene stations.
	Weekly inspections to be documented on a Weekly Environmental Inspection Checklist.
	Outcomes of pre-clearance surveys are to be documented and provided to the HCCDC.
	Observed sick or dead GGBF are to be notified to the Principal immediately.

Appendix E. Revegetation Management Plan

Revegetation Management Plan		
Objective	To comply with State and Commonwealth approvals requirements and related conditions. To provide a post construction environment that is revegetated to stabilise the capping surface; and planted with species known to be favoured by GGBF.	
Targets	The capped surface is stabilised and vegetated within 12 months of construction completion. Provide a revegetated capped surface that includes species of flora known to be favoured by GGBF.	
Key Documents	State Documents NSW EPA (2010), Approval of the Surrender of a Licence – License 6437, (Ref: 1111840, and as varied by notice number 1510956 and 1520063) Golders (2011), KIWEF Closure Works, Green and Golden Bell Frog Management Plan (Ref: 117623029-001-R-Rev0) GHD (2009), Report on KIWEF, Revised Final Landform and Capping Strategy (Ref: 22/14371/85882 R4) Jacobs (2018) Addendum Review of Environmental Factors, KIWEF Area 2 Closure Works Commonwealth Documents Ramboll (2018), EPBC Referral, Preliminary Documentation Package – KIWEF Area 2 Closure Works (Ref: 318000395)	
Mitigation Measures and Controls	 General mitigation measures to be considered include: Care should be taken that any noxious weeds occurring on the site are not further dispersed as a result of the Proposal. A follow up Weed Control Program may be necessary to control the encroachment of these species into surrounding areas. The landowner has a legal responsibility to control and suppress these species on their property under the <i>Noxious Weeds Act 1995</i>. The Weed Control Program should be remove weeds by physical means and avoid the use of herbicides Stockpiling of soil that may contain seeds of exotic species shall be stockpiled away from adjacent vegetation or drainage lines where they could be spread during rainfall events. Placement of soil stockpiles away from vegetated areas. Utilising existing disturbed corridors such as cleared areas, roads, tracks and existing easements, where possible for set up of equipment, stockpile areas and site facilities Bitou Bush and Crofton Weed would be managed by following the Local Noxious Weed Control Plans (NCC 2006). It is recommended that the plants be removed by physical removal, as herbicides may impact GGBFs and their habitat. 	

Revegetation Management Plan		
	Plant and equipment brought on to site must be cleaned and free of deleterious material, mud and other material that may harbour weed seeds	
	 Works associated with the closure of the KIWEF must only occur within the closure works area (project footprint); and must be restricted to the extent required to satisfy the Surrender Notice requirements. 	
	· All disturbed surfaces will be revegetated within 1 month of final land forming and in compliance with the landscaping plans.	
	 Any capping materials that are imported from outside the KIWEF facility must be sourced from an area that is assessed as having a low risk of containing Chytrid Fungus. The Chytrid Assessment Process will follow the below procedure: 	
	 The contractor is to demonstrate that suitable risk assessment has been undertaken by an appropriately qualified and experienced ecologist on all imported capping and revegetation materials to demonstrate that it contains a low risk of containing chytrid. Risk assessment should consider as a minimum: 	
	 Material not sourced from known, suspected or likely amphibian habitat areas; 	
	 Material unlikely to have had contact with amphibians and no amphibians present in material; and 	
	 Material stored in a dry location prior to transport. 	
	Topsoil to be used for surface layers must be sourced from within KIWEF to the extent possible and will otherwise be assessed as low in nutrients and having a low risk of containing Chytrid Fungus to be protective of adjacent MNES habitat.	
	· Upon completion of works, the works area will be rehabilitated with vegetation species known to be favoured by GGBF.	
	 Open stormwater infrastructure across the KWIEF site will be planted with species known to be favoured by GGBF. This revegetation and rehabilitation strategy will include a 2m wide buffer on either side of the stormwater drains. The intention is to provide movement corridors for GGBF across the site. 	
	Drainage culverts will, where practicable, be vegetated and lined with rocks and objects that may provide temporary frog refuge, in the event that a frog seeks to traverse the future capped area of KIWEF.	
	 Habitat features such as woody debris that may be utilised by fauna within the construction area would be retained and set-aside during the construction period for reinstatement at completion of works. 	
	• Prior to the Construction Completion dates the Contractor is required to seed the vegetation layer above the capping layer and reseed areas where sparse vegetation coverage is achieved by the end of the care and maintenance period.	
Species Mix	Aquatic vegetation:	
	Selection of reeds that provide good habitat cover such as Typha, Bolboshoenus, Phragmites, and Juncus;	
	A mixed community is preferable to single species stands;	

Revegetation Management Plan		
	GGBF prefer wetlands with sections of open water. Water depth should be deep enough to prevent Typha spreading across the entire pond area; the reeds should be mainly at the edge of ponds;	
	Substrate at edges should be suitable for reed growth (i.e. not too many pebbles, sandbags, etc.);	
	· Areas of low blanketing vegetation are also desirable for GGBF breeding, for example, Paspalum grass and Shoenoplectus rush;	
	Establishing aquatic plants with planting after Closure Works: will maximise structural suitability of wetland to immigrating GGBF as soon as construction is completed.	
	Terrestrial vegetation:	
	Stabilise new works with sterile millet (or other suitable cover crop);	
	Retain seed bank in fill taken from site (to be reused);	
	Avoid large tree species (as roots may potentially compromise the cap);	
	Allow terrestrial species to re-colonise Drainage culverts will, where practicable, be vegetated and lined with rocks and objects that may provide temporary frog refuge, in the event that a frog seeks to traverse the future capped area of KIWEF.	
Performance Criteria	Establish adequate vegetation coverage across the closure area. Where vegetation regrowth is sparse (ie less than 50% growth) in areas of greater than 10m ² , the performance criteria will be considered to have failed and contingency measures are required.	
	No deep-rooted vegetation (ie large shrubs or trees) on top of capped surface	
Contingency Measures	Where Vegetation Coverage has been identified to be insufficient, the area will be reseeded.	
	Where deep-rooted vegetation is identified on top of capped surface. The vegetation will be removed (mechanically where possible).	
Responsibilities	The Contractor is responsible for undertaking the work, monitoring and maintenance of all elements of the revegetation management plan, until the completion of the construction maintenance period (indicatively 3 months post construction completion).	
	The State (or its agent) is responsible for the monitoring and maintenance of all elements of the revegetation management plan and any rectification works, following the completion of the construction maintenance period.	
Timeframe	For the duration of the construction works; and the construction maintenance period.	
Monitoring & Reporting	Vegetation establishment will be visually monitored monthly during the construction works and construction maintenance period to identify any areas where vegetation is failing to establish. Should vegetation not establish within the construction maintenance period then targeted seeding and/or planting would be undertaken.	

Appendix F. Water Quality Management Plan

Water Quality Management Plan		
Objective	To comply with State and Federal approval requirements. To prevent water discharges from construction works area to the extent possible. To manage water discharged to avoid impact to receiving waters.	
Targets	No sediment or water quality impacts to the surrounding environment and waterways from the construction works.	
Key Documents	State Documents NSW EPA (2010) Approval of the Surrender of a Licence – Licence 6437 (Ref. 1111840, and as varied by notice number 1510956	
	and 1520063). GHD (2009), Report on KIWEF, Revised Final Landform and Capping Strategy (Ref: 22/14371/85882 R4) Commonwealth Documents	
	Ramboll (2018), EPBC Referral, Preliminary Documentation Package – KIWEF Area 2 Closure Works (Ref: 318000395)	
Controls	 Erosion and sediment control will be designed, installed and managed as follows: Progressive erosion and sediment control plans (ESCPs) will be developed by the Contractor and implemented prior to the commencement of topsoil stripping and earthworks. The for construction design for permanent sediment basins is to be in accordance with the environmental protection standards for sensitive environments based on Managing Urban Stormwater - Soils and Construction, (Landcom, 2004), as well as documents from other States and internationally (such as "International Erosion Control Association – Australasia"). The Contractor is required to install the permanent sediment basins as per the for construction design and any necessary temporary erosion and sediment control measures in advance of bulk-earthworks reporting to each basin. Alternative arrangements proposed by the Contractor are also required to be in accordance with these standards. Erosion and sediment control structures are to be regularly inspected and maintained, particularly in advance of and following significant rainfall events. Any water discharges are required to be managed to avoid pollution of waters having regard to the sensitivity of the receiving environment. In particular, any flocculants are to be demonstrated as being both effective and safe for amphibians prior to use. Top soil/mulch stockpiles to be not greater than 2.0m in height. All stockpiles will be located clear of watercourses and drainage works. Wastewater management facilities shall only be provided through proprietary storage and pump out systems. 	
	 All disturbed surfaces will be revegetated as soon as possible. 	

Water Quality Management Plan	
	 All temporary ESC works will be removed immediately prior to final completion and all surfaces will be returned to pre- existing condition.
	 Provision of shaker grids or rumble strip at site egress points.
	 if contaminated materials are encountered, they are to be managed in accordance with Materials Management Plan, and as a minimum isolated and covered to avoid runoff.
Performance Criteria	Discharge quality must comply with Performance Criteria:
	 TSS: < 50mg/Lt (~Turbidity 30NTU).
	pH: Between 6.5 and 8.5.
	Otherwise able to be demonstrated not to have caused pollution of waters.
Contingency Measures	If Water Quality performance criteria is not suitable for discharge, other management measures must be implemented prior to discharge. These may include such things as:
	 the trapped sediment laden water may be treated with flocculants at a rate demonstrated in advance to be effective on the local material properties and using substances safe for amphibians;
	 Dosing with appropriate buffers to neutralise water;
	 Other mitigation measures deemed appropriate which may include a purpose constructed soak-away where HCCDC advices a suitable location such that contamination in fill is not likely to be mobilised.
Responsibilities	The Contractor is responsible for undertaking the work, monitoring and maintenance of all elements of the water quality management plan until the completion of the construction maintenance period (indicatively 3 months post construction completion).
	The State (or its agent) is responsible for the monitoring described under the KIWEF Annual Water Monitoring and the KIWEF Continuous Data Logging.
Timeframe	Construction Water Quality and Erosion Sediment Controls will be maintained and monitored throughout the duration of site works.
Monitoring and	Daily visual monitoring by site supervisors.
Reporting	Documented post rainfall checks of sediment basin water level and water quality and erosion and sediment control functioning.
	Weekly documented inspections.
	Maintenance activities for ESCPs shall be documented.
	Sediment basin discharge or dewatering water quality sampling and analysis suitable to demonstrate pollution of water has/will not occur. All water quality data including quantity, quality and dates of water release will be maintained within the project records.

Appendix G. Traffic Management

Traffic Management	
Objective	To ensure that additional traffic from construction activities does not cause an environmental nuisance.
Targets	No valid complaints resulting from congestion from construction traffic Comply with traffic management standards
Legal, Contractual and Other Requirements	Protection of the Environment Operations Act 1997 Roads Act 1993 RTA Traffic Control at Worksites Roads (General) Regulation 2000 Local Government Act 1993
Site specific planning / approval conditions / licence conditions	Not applicable.
Controls (means and resources)	The Contractor is required to develop a Traffic Management Plan detailing the route to the site, times of activity, types of machinery, signage, traffic control measures, once the source of any imported materials has been identified. The following traffic management control measures to be implemented are to be detailed in Construction Traffic Management Procedures (CTMP):
	 Traffic will be required to adhere to routes and speed limits designated by the Contractor, in consultation with the HCCDC, ARTC, NCIG and RMS and the RMS Contractor for the Tourle Street / Cormorant Road upgrade works (if ongoing);
	· Worksite speed limits will be determined for areas of the site based on road type, road condition and adjacent work activity;
	Normal road rules apply unless specifically stated otherwise;
	Barrier systems may be used at the discretion of the Contractor to define the designated routes;
	• All project personnel will be required to undertake the site induction that will specify appropriate traffic practices on site;
	Site staff with responsibilities for control of construction activities will perform site inspections aimed at maintaining traffic at determined worksite speed limits;
	Following site surface stabilisation/ rehabilitation works to control erosion, foot and vehicular traffic will be avoided on recently stabilised areas wherever practical;
	Water spraying (where appropriate) will be used to minimise the generation of dust from roadway surfaces;
	An inspection system will be established by the Contractor to assess effectiveness of traffic control measures. The assessments will determine if any modification is required to practices on site or the CTMP; and
	An incident management procedure for emergencies relating to traffic management for the project works.

Traffic Management	
Actions	Contractor to incorporate the above traffic management measures into Contractor's Traffic Management Plans.
Responsibilities	The Contractor is responsible for ensuring traffic management plans are developed, approved and implemented.
Timeframe	Duration of site works.
Monitoring and Reporting	Daily inspection, checks and regular maintenance to be completed for traffic control measures.

Appendix H. Air Quality Management

Dust and Air Quality	
Objective	To ensure that dust and other air emissions from construction activities do not cause impacts on sensitive receivers and equipment.
Targets	 No visible dust (or offensive odours) leaving site and reaching: Identified or potential GGBF habitat, particularly water bodies and fringing vegetation; and Cormorant Road or neighbouring coal loader operations.
Legal, Contractual and Other Requirements	Contract specification Review of Environmental Factors Kooragang Island Waste Emplacement Facility Area 2 Closure Works (ERM 2016) Protection of the Environment Operations Act 1997 Protection of the Environment Operations (Clean Air) Regulation 2002
Site specific planning / approval conditions / licence conditions	All activities associated with the closure, capping, rehabilitation and post-closure maintenance and monitoring at the premises must be carried out in a manner that will minimise the emission of dust from the premises.
Controls (means and resources)	 Mitigation measures include amending the nature of work in the event that construction works do not meet the above Objective. Operation of all facilities and equipment on the site will be performed so as to minimise reduce the emission of dust, odour and other air impurities including: Use of water sprays to reduce dust emission from trafficable areas, work areas, stockpiles and other exposed areas but not to draw water from existing ponds as per the flora and fauna management plan; Where necessary, stabilisation of long term stockpiles; Reduce the number and extent of disturbed areas at a given time during the remediation activity on site; Control of haul loading vehicles, whereby the load will not exceed the height of the haul boards and tailboards on the vehicles; The vehicle speed shall be restricted along the haul roads on site to minimise dust generation and potential spilling of hauled material; Cleaning/maintenance of the access and haul roads where they interface with public roads to prevent sediment tracking; Loads of soil or contaminated material entering and leaving site will be covered. Internal material transport will also require a cover if material is likely to or observed to be generating dust; Any excavated material likely to generate odours will be covered; Maintenance and servicing of plant and vehicles to minimise reduce emission of air pollutants;
	• Observations of prevailing (and forecast) weather conditions, to program site activities in order to minimise air quality issues;

Dust and Air Quality	
	Modify work practices during dry and windy conditions;
	Progressively stabilise and/or revegetate as areas of works as completed;
	Provide shaker grids or rumble strip at site egress points and where aggregate is used, minimum size is 150mm;
	Remove mud from haul vehicles prior to entering public roads;
	Remove spilt mud by construction equipment or vehicles on public roads; and
	Provide awareness training in the need to minimise dust during site inductions and toolbox talks.
Actions	Contractor to implement reasonable and feasible measures from the above to achieve air quality goal.
Responsibilities	Contractor
Timeframe	Duration of site works.
	Water tankers and other measures available at the commencement of earthworks.
	Spilt mud and sediment to be removed from public roads as soon as practicable, and at least prior to the end of each shift.
Monitoring and Reporting	Daily observations of dust generation, mud tracking, vehicle emissions, site generated odours and weather conditions (wind direction and strength).
	Weekly inspect to record functioning of air quality controls.

Appendix I. Noise Management

Noise and Vibration	
Objective	To ensure that noise and vibration from construction activities does not cause environmental nuisance or unnecessarily disturb fauna.
Targets	No valid noise / vibration complaints resulting from construction works. No unreasonable noise or vibration. No noise and vibration impacts on external receptors.
Legal, Contractual and Other Requirements	 Works are to be undertaken in accordance with the Interim Construction Noise Guidelines with works to be restricted to: 7 am to 6 pm Monday – Friday 8 am to 1 pm Saturdays No work outside of these hours without HCCDC's approval (except for emergency situations). Protection of the Environment Operations Act 1997 Protection of the Environment Operations (Noise Control) Regulation 2000
Site specific planning / approval conditions / licence conditions	 All activities associated with the closure, capping, rehabilitation and post-closure maintenance and monitoring at the premises must be carried out in a competent manner. This includes: The processing, handling, movement and storage of materials and substances used at the premises; and The treatment, storage, processing, reprocessing, transport and disposal of any waste generated by the activity. All plant and equipment installed at the premises or used in connection with the closure, capping, rehabilitation and post-closure maintenance and monitoring activities at the premises must be: Maintained in a proper and efficient condition; and Operated in a proper and efficient manner.

Noise and Vibration	
Controls	No work will be undertaken outside of the agreed hours without prior approval (except in an emergency situation).
(means and resources)	Delivery operations or other noise generating activities at compound and storage areas will take place during the designated construction hours nominated above, unless specifically required by Police or RTA requirements.
	Reasonable and feasible mitigation measures to be considered as required include:
	Avoiding where practical the use of noisy plant simultaneously close together or adjacent to sensitive receptors;
	All plant will be maintained in accordance with the manufacturer's requirements;
	Stationary noise generating equipment to be orientated away from sensitive areas;
	Undertaking loading and unloading activities away from sensitive areas and during designated construction hours;
	 Selection of the most appropriate plant and equipment to minimise noise generation and include where necessary screening and enclosures;
	· Regular checks are to be undertaken to ensure all equipment and vehicles are in good working order and are operated correctly; and
	Awareness training and information will be provided to project personnel in relation to the vibration requirements on the project and the need to minimise vibration when in close proximity to operational areas (rail corridor).
Responsibilities	Contractor
Timeframe	Duration of site works.
Monitoring and Reporting	Vehicle inspections to be recorded on daily vehicle pre-start checks.

Appendix J. Heritage management

Heritage Management Archaeology and Heritage	
Objective	To ensure that undiscovered heritage and archaeological items are protected from construction activities.
Targets	Unknown or undocumented heritage sites are not knowingly destroyed, defaced or damaged. Identify and protect any new artefacts or heritage sites before any harm can take place.
Legal, Contractual & Other Requirements	Heritage Act 1977 National Parks and Wildlife Act 1974
Controls (means & resources)	 No known heritage items or areas have been identified within the project site or surrounds. As such, heritage mitigation measures are limited to restricting access beyond the project boundary and the implementation of the following 'chance find' protocol: In the event that potential Aboriginal and Historic heritage items are discovered, STOP ALL WORK in the vicinity of the find and immediately notify the relevant Construction Supervisor and Environmental Manager; Contact HCCDC to notify of the find as soon as they receive notification; In the event of uncovering remains that are potentially human, the NSW Police are also to be contacted immediately; Record the details and take non-intrusive photos of the find and relay information to HCCDC; HCCDC will contact a qualified archaeologist to get advice regarding the nature and potential significance of the find; If the qualified archaeologist advises that the find is not a potential heritage item, work will recommence in consultation with HCCDC; If the qualified archaeologist advises that the find is a potential heritage item HCCDC will contact and notify the relevant authority; and
	Work is not to recommence in the area of the identified find until clearance is received from HCCDC.
Responsibilities	All persons are responsible for reporting items of potential cultural or heritage value. Contractor's representative will ensure the implementation of the above chance finds protocol in the event that items of potential cultural or heritage value are uncovered.
Timeframe	Duration of site works
Monitoring & Reporting	Ongoing visual observations for previously unidentified items. Reporting of any chance finds in accordance with the above protocol.

Appendix B – Green and Golden Bell Frog Management Plan (Golder Associates, 2011)

19 April 2011

GREEN AND GOLDEN BELL FROG MANAGEMENT PLAN

Kooragang Island Waste Emplacement Facility Closure Works

Submitted to: Hunter Development Corporation Suite B, Level 5 PricewaterhouseCoopers Centre 26 Honeysuckle Drive Newcastle, New South Wales 2300

REPORT

Report Number.

117623029-001-R-Rev0

Executive Summary

The Kooragang Island Waste Emplacement Facility (KIWEF) is located on land owned by the New South Wales (NSW) State Property Authority, which is managed under delegated-authority by the Newcastle Port Corporation (NPC).

The KIWEF contains various wastes from the former BHP steelworks at Mayfield. Hunter Development Corporation (HDC) is in the process of closing the KIWEF via implementing certain landfill closure works, which include land-forming of waste emplacement cells and construction of a capping layer over much of the KIWEF site.

Historically, HDC was the holder of an Environment Protection Licence (EPL) over the site for the former BHP Solid Waste facility (refer to Figure 1). That EPL has now been surrendered, subject to the implementation of landfill closure works required by the NSW Office of Environment and Heritage (OEH) (formerly the NSW Department of Environment, Climate Change and Water (DECCW)). HDC, as the Agents for the Crown, are undertaking those necessary landfill closure works, on lands administered by NPC, which encompass the KIWEF (Figure 1).

The KIWEF site supports known populations and habitat of the Green and Golden Bell Frog (*Litoria aurea*). A flora and fauna impact assessment (GHD, 2010a) of the proposed landfill closure works concluded that the works are "designed to minimise the direct and indirect impacts on biodiversity of the locality, especially in relation to the Green and Gold Bell Frog... The Proposal also addresses the risks posed from the prior disposal of BHP waste on the site" and is unlikely to result in "long-term decrease in the size of a population, reduce the area of occupancy of species, fragment an existing population, adversely affect habitat critical to the survival of a species, disrupt the breeding cycle of a population, modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that a species is likely to decline, result in invasive species that are harmful to an endangered species becoming established in the endangered habitat, or interfere with the recovery of any threatened species".

Overall, the flora and fauna impact assessment (GHD, 2010a) reported that the proposed capping strategy is unlikely to impact significantly on Green and Golden Bell Frogs, provided the works are managed through an appropriate environmental management plan.

In order to assist in minimising impacts of the landfill closure works, HDC engaged Golder Associates Pty Ltd (Golder) to develop this Green and Golden Bell Frog Management Plan (the GGBF Management Plan). HDC intend to incorporate this GGBF Management Plan into the detailed design documentation currently being developed for the landfill closure works. An Action Plan has been developed by Golder in conjunction with this GBBF Management Plan and is reported to HDC separately (Golder, 2011).

The Green and Golden Bell Frog is listed as 'endangered' under the NSW *Threatened Species Conservation Act 1995*, and 'vulnerable' under the federal *Environmental Protection and Biodiversity Conservation Act 1999*. Historically, this species was widespread across much of the Hunter Valley; however, it is now believed to be restricted to four key populations, including a large population on Kooragang Island (including the KIWEF site).

The Green and Golden Bell Frog is a relatively large species and is usually green, most often with irregular large gold spots and/or stripes. The Green and Golden Bell Frog can be regarded as somewhat of a habitat generalist, dispersing widely and maturing early. It is known to inhabit marshes, dams and stream sides and appears to prefer those water bodies where Bulrushes (*Typha* spp.) or Spikerushes (*Eleocharis* spp.) grow (NPWS, 1999). Green and Golden Bell Frogs are also known to inhabit highly disturbed sites (NPWS, 1999), such as the KIWEF site. The Green and Golden Bell Frog is known to travel significant distances across often seemingly inhospitable habitat. Distances of up to 1.5 km day/night are not unknown, particularly associated with significant rain events.

Frog Chytrid Fungus (FCF) has been identified as a key threatening process, at both the state and national level, for the Green and Golden Bell Frog (DSEWPC, 2009). FCF is widespread on Kooragang Island and Hexham Swamp, the other key Green and Golden Bell Frog population in the Newcastle area (DECC, 2007).

Section 3 of this document details the management procedures to be implemented, including identification and delineation of disturbance areas, pre-work surveys, identification of relocation areas, relocation procedures and rehabilitation of disturbed habitat, environmental induction training and site hygiene management for Chytrid fungus.

Section 4 of this document outlines the proposed monitoring programme for Green and Golden Bell Frogs at the KIWEF site. The monitoring programme includes annual review of publicly available baseline and ongoing data from other surveys including frog populations (such as that being undertaken by NCIG across the KIWEF site). An Annual Environmental Monitoring Report (AEMR) discussing the results of analysis of monitoring data will be presented to OEH.

Section 5 of this document identifies specific management and mitigation measures for disturbed areas and triggers for the development of response criteria in the unlikely event that the landfill closure works have an impact on the Green and Golden Bell Frogs. If the results of the monitoring programme indicate a decline in Green and Golden Bell Frog numbers across the site, which cannot be attributed to natural population fluctuations and variability, and is potentially a direct result of the landfill closure works, specific response criteria will be developed by HDC in consultation with the OEH.

Section 6 of this document outlines proposed review and reporting actions. HDC will report to OEH annually for 5 years following completion of the landfill closure works, unless analysis shows that Green and Golden Bell Frog populations are being impacted, then further reporting will be undertaken until a time agreed with OEH.

In accordance with the *Approval of Surrender of Licence Number 6437*, the Director-General will be notified of any incident with actual or potential significant off-site impacts on people or the biophysical environment, as soon as practicable after the occurrence of the incident. The Director-General will be provided with written details of the incident within seven days of the date on which the incident occurred.

The AEMR will be distributed to relevant government agencies and stakeholders, and copies provided to other interested parties, if requested.

In accordance with the *Approval of Surrender of Licence Number 6437*, this Management Plan will be made available on the HDC website.

Table of Contents

1.0	.0 INTRODUCTION				
	1.1	BACKGROUND	1		
	1.2	A SUMMARY OF WORKS COMPLETED TO DATE	1		
	1.2.1	Flora and Fauna Impact Assessment	2		
	1.2.2	March 2011 Survey			
	1.2.3	Capping Strategy			
	1.3	Other Relevant Management Plans and Guidelines	6		
	1.4	Project Approval	6		
	1.5	Objectives of this Plan	6		
	1.6	Scope and Use of this Plan	7		
	1.7	Structure of this Plan	7		
2.0	SPECI	ES PROFILE – GREEN AND GOLDEN BELL FROG (<i>LITORIA AUREA</i>)	10		
	2.1	Conservation Status	10		
	2.1.1	Listing	10		
	2.1.2	Known Populations	10		
	2.1.3	Management and Recovery Plans	10		
	2.2	Key Distinguishing Features	10		
	2.2.1	Adult Frogs	10		
	2.2.2	Tadpoles	12		
	2.2.3	Similar Species within the KIWEF Area	12		
	2.3	Aspects of Ecology Important for Management	13		
	2.3.1	Preferred Habitat	13		
	2.3.2	Habits	13		
	2.3.3	Breeding	13		
	2.3.4	Threats	13		
3.0	MANA	GEMENT PROCEDURES	15		
	3.1	Identification and Delineation of Disturbance Areas	15		
	3.2	Identification of Areas of Disturbance to Habitat	15		
	3.3	Environment Induction and Training	15		
	3.4	Site Hygiene Management	15		
	3.4.1	Hygiene Training			

GGBF MANAGEMENT PLAN

7.0	REFER	ENCES	25
6.0	REPOR	RTING AND REVIEW	24
	5.4.2	Population Monitoring	23
	5.4.1	General Site Environmental Management	23
	5.4	Response Criteria	23
	5.3	Measures to Enhance Restore and Maintain Habitat	22
	5.2	Specific Management Measures for Disturbed Areas	21
	5.1	Management of All Disturbance Areas	21
5.0	RESPO	INSE CRITERIA AND SPECIFIC MITIGATION AND MANAGEMENT MEASURES	21
4.0	GREEN	AND GOLDEN BELL FROG MONITORING PROGRAMME	20
	3.6.3	Procedures for Handling Sick or Dead Green and Golden Bell Frogs	17
	3.6.2	Relocation Procedure Outside of Pre-works Surveys	17
	3.6.1	Relocation Procedure during Pre-works Surveys	16
	3.6	Green and Golden Bell Frog Relocation Procedures	16
	3.5	Pre-works Surveys for Disturbance Areas	16
	3.4.2	Inspection and Disinfection of Mobile Plant	16

TABLES

Table 1: Symptoms of sick and dying frogs	18
Table 2: Diagnostic behaviour tests – sick frogs will fail one or more of the following tests	18

FIGURES

Figure 1: KIWEF site location	9
Figure 2: Adult Green and Golden Bell Frog (Litoria aurea)	. 11
Figure 3: Tadpole Green and Golden Bell Frog (Litoria aurea)	. 12

APPENDICES

APPENDIX A Hygiene Protocol for the Control of Disease in Frogs

APPENDIX B Limitations

1.0 INTRODUCTION

1.1 BACKGROUND

The Kooragang Island Waste Emplacement Facility (KIWEF) is located on land owned by the New South Wales (NSW) State Property Authority, which is managed under delegated-authority by the Newcastle Port Corporation (NPC).

The KIWEF contains various wastes from the former BHP steelworks at Mayfield. Hunter Development Corporation (HDC) is in the process of closing the KIWEF via implementing certain landfill closure works, which include land-forming of waste emplacement cells and construction of a capping layer over much of the KIWEF site.

Historically, HDC was the holder of an Environment Protection Licence (EPL) over the site for the former BHP Solid Waste facility (refer to Figure 1). That EPL has now been surrendered, subject to the implementation of landfill closure works required by the NSW Office of Environment and Heritage (OEH) (formerly the NSW Department of Environment, Climate Change and Water (DECCW)). HDC, as the Agents for the Crown, are undertaking those necessary landfill closure works, on lands administered by NPC, which encompass the KIWEF (Figure 1).

The KIWEF site supports known populations and habitat of the Green and Golden Bell Frog (*Litoria aurea*). A flora and fauna impact assessment (GHD, 2010a) of the proposed landfill closure works concluded that the works are "designed to minimise the direct and indirect impacts on biodiversity of the locality, especially in relation to the Green and Gold Bell Frog... The Proposal also addresses the risks posed from the prior disposal of BHP waste on the site" and is unlikely to result in "long-term decrease in the size of a population, reduce the area of occupancy of species, fragment an existing population, adversely affect habitat critical to the survival of a species, disrupt the breeding cycle of a population, modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that a species is likely to decline, result in invasive species that are harmful to an endangered species becoming established in the endangered habitat, or interfere with the recovery of any threatened species".

Overall, the flora and fauna impact assessment (GHD, 2010a) reported that the proposed capping strategy is unlikely to impact significantly on Green and Golden Bell Frogs, provided the works are managed through an appropriate environmental management plan.

In order to assist in minimising impacts of the landfill closure works, HDC engaged Golder Associates Pty Ltd (Golder) to develop this Green and Golden Bell Frog management plan (the GGBF Management Plan) to support the landfill closure works. HDC intend to incorporate this GGBF Management Plan into the detailed design documentation currently being developed by HDC for the landfill closure works.

This GGBF Management Plan has been prepared in accordance with HDC's Request for Tender No. 141 ("Green & Golden Bell Frog Management Plan and Action Plan for K26/32 Ponds: KIWEF"), dated February 2011, and Golder's responding proposal, dated 28 February 2011 as accepted via a letter from HDC emailed to Golder on 16 March 2011. This Management Plan has been prepared via review of documentation provided by HDC to Golder on 22 March 2011, a visual site visit by Golder personnel and written commentary from HDC.

An Action Plan for the K26/K32 Ponds has been developed by Golder in conjunction with this GBBF Management Plan and is reported to HDC in a separate document (Golder, 2011).

1.2 A SUMMARY OF WORKS COMPLETED TO DATE

A range of studies have been completed by others in relation to the Green and Golden Bell Frogs on the KIWEF site since its hand over to the Crown in 2002. The most recent relevant studies are listed in the following. It is noted that other previous studies are summarised in these works, and, therefore, are not identified here.

- Revised Capping Strategy, Flora and Fauna Impact Assessment, Rev 3 (GHD, 2010a).
- March 2011 Green and Golden Bell Frog (Litoria aurea) Survey at the Kooragang Island Waste Emplacement Facility (Umwelt, 2011).
- Revised Final Landform and Capping Strategy, Rev 4, (GHD, 2010b).

The key findings of those reports, as relevant to the ongoing management of Green and Golden Bell Frogs on the KIWEF site, are presented below.

1.2.1 Flora and Fauna Impact Assessment

The flora and fauna impact assessment of the revised capping strategy was undertaken as part of the EPL surrender, which the then DECCW required to identify any impacts resulting from the implementation of the final capping strategy on Green and Golden Bell Frogs (and other threatened species). The assessment was also required to identify associated mitigation measures for those species and their habitats.

Key Findings

The key findings of the flora and fauna impact assessment (GHD, 2010a) comprised the following:

- The assessment identified areas of known and potential Green and Golden Bell Frog Habitat (as indicated on Figure 1), and determined the presence, relative abundance and distribution of Green and Golden Bell Frogs on the KIWEF site, and the adjacent Ash Island. A summary of the locations and numbers of Green and Golden Bell Frogs recorded on the KIWEF site is presented in Figure 1. During the assessment (that is February and March 2009), 59 Green and Golden Bell Frogs were recorded from the KIWEF and surrounding area; 38 individuals were recorded on the KIWEF site.
- Two important factors to note, as identified in the report, are:
 - The Green and Golden Bell Frog's ongoing survival on Kooragang Island, and the KIWEF site, may be related to the protection that the brackish wetland habitat provides from the Chytrid fungus (Stockwell, pers. comm., in GHD, 2010a).
 - The terrestrial habitats and ephemeral water bodies supported on the KIWEF site and the larger Kooragang Island may provide important movement corridor refuges for Green and Golden Bell Frogs (Hamer *et al.*, 2008, in GHD, 2010a).
- Potential changes to water quality, especially salinity, may adversely affect the Green and Golden Bell Frogs on the KIWEF site.
- The *in situ* contaminated materials present across the KIWEF site will be addressed by the capping strategy. There is, therefore, the potential for water quality in, and adjacent to, the capped location to remain similar or improve.
- The capping strategy was designed to minimise changes to hydrology. As noted, however, the construction of the NCIG rail loop has impacted on the known Green and Golden Bell Frog habitat supported in the K26 and K32 cells, and potentially already altered the hydrology of these ponds.
- Where the proposed capping strategy would impact on streamside vegetation and banks, and, hence, potential Green and Golden Bell Frog habitat, that vegetation would be reinstated immediately following capping works to a state as close as possible to the original.
- Plague Minnow (Gambusia holbrooki), a known predator of Green and Golden Bell Frog tadpoles, was recorded in ponds across the KIWEF site.
- The assessment considered that the capping strategy would result in minimal fragmentation or isolation of currently interconnecting areas of Green and Golden Bell Frog habitat. The capping strategy would

leave areas of appropriate habitat in areas within the KIWEF site and the adjacent Hunter Estuary National Park.

- That vegetation that may be cleared or capped is considered unlikely to constitute key foraging habitat for Green and Golden Bell Frogs.
- The potential cumulative impacts on Green and Golden Bell frogs and their habitat across the local area from other proposals, is unknown; particularly impacts on potential movement between populations north and south. Furthermore, inference is made that competition for resources, required by the species, may have potentially increased because of the translocation of individuals into suitable areas on the KIWEF site from areas impacted by other proposals. However, the proposed "capping strategy aims to avoid increasing these pressures while dealing with the potentially harmful pollutants on site" and "is unlikely to add to these previous impacts or add to cumulative adverse impacts on threatened species at the KIWEF site".
- Overall, the assessment reports that the proposed capping strategy is unlikely to impact significantly on Green and Golden Bell Frogs, provided the works are managed through an appropriate environmental management plan. Those assessments of significance were undertaken in accordance with the Commonwealth's *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) and the NSW *Environmental Planning and Assessment Act 1979* (EPA Act).

Mitigation Measures

The following mitigation measures were recommended in the flora and fauna impact assessment:

- A 30 m buffer zone is proposed around fresh and brackish water wetlands, ponds, and identified areas of Green and Golden Bell Frog habitat.
- If it is identified that works will occur in Green and Golden Bell Frog habitat (such as the fringing habitat near Deep Pond), one week prior to those works commencing, a pre-clearance survey is required to be conducted by a qualified ecologist. In the event that any Green and Golden Bell Frogs are identified, they will be relocated (using appropriate amphibian hygiene protocols).
- Once works are complete, the restoration and rehabilitation of that habitat should be undertaken.
- Control of noxious weeds on the site should be undertaken limiting the use of herbicides, which may be detrimental to Green and Golden Bell Frogs.
- Maintenance of the current hydrological and water chemistry regimes; in particular, low levels of salinity in the brackish wetlands, which may protect amphibian species from the Chytrid fungus. The maintenance of runoff volumes into these areas may help conserve appropriate salinity levels.
- Similarly, general erosion and sediment control should be implemented to limit the transport of other contaminants across the KIWEF site.
- Capping and grading activities should be conducted outside of the Green and Golden Bell Frog's core breeding period (that is, September to March). If works need to be undertaken during this time, they should be limited to areas outside of recognised breeding habitat. For the purposes of this GGBF Management Plan, breeding habitat is defined as areas within or immediately adjacent to emergent, aquatic macrophytes.
- Standing water should not be transferred between waterbodies, to prevent the spread and establishment of the Plague Minnow.
- Suitable hygiene protocols must be developed and adhered to for all plant and personnel entering the KIWEF site to avoid the spread of Chytrid fungus.

- Compensatory habitat for the Green and Golden Bell Frog may be considered as part of the capping strategy. For example, the capping works may facilitate rehabilitation of suitable Green and Golden Bell Frog habitat. However, HDC has indicated that it is not intending to create artificial habitat, interfere with existing habitat, nor are seeking to modify frog population numbers or habitat.
- Ongoing, long-term monitoring of the Green and Golden Bell Frog population across the entire KIWEF site, and adjacent areas, such as the NCIG facility, should be undertaken seasonally. This data will help identify if any adverse impacts have affected the Green and Golden Bell Frog population and habitat across Kooragang Island.

1.2.2 March 2011 Survey

The March 2011 survey of GGBF (Umwelt, 2011) targeted the rail loop area, including K26 and K32 Ponds (as well as K24 and K31 Ponds). Overall, this survey was suitable for its purpose. However, the following comments are made in relation to the survey scope and its findings. Those comments were used to assist in the development of the Action Plan for the K26/K32 Ponds (Golder, 2011).

- No detailed surface water quality data have been collected and analysed for the standing water in the Ponds.
- It is known that some contaminants are detrimental to frog embryos and development, as well as known to lead to malformations in frogs for example, Abbasi and Soni, 1984; Anon., 1999, Arrieta *et al.*, 2004, Guillermo *et al.*, 2000; Marquis *et al.*, 2006; Rice *et al.*, 2002; Stabenau *et al.*, 2006; Wang and Jia, 2008). Some surface water chemistry data are available (see NCIG, 2008, in GHD, 2010b) that indicate values exceeding ANZECC trigger values for aquatic ecosystems; however, these are limited. In the absence of detailed water chemistry data, there is no baseline to compare for the long-term monitoring of the water quality, correlated with the frog populations. This represents a significant data gap.
- Data on the periodicity of the standing water in the cells has not been collected. Such data would assist in the understanding of the impacts of changes in local hydrology, such as may have occurred during construction of the NCIG rail loop.
- The mere presence of calling males may not be a useful indicator of successful breeding in the ponds. This, to some extent, has been alluded to in both the GHD (2010) and the Umwelt (2011) studies in that no tadpoles were recorded in the cells during either of those studies.
- The presence of juveniles may be a valid indicator of a sustainable population as this species is known to emigrate over large distances. Therefore, it would be useful to confirm that there has been effective breeding over one or more seasons, with tadpoles that survive to adulthood.
- The baseline comparison that the Umwelt (2011) report makes with the GHD (2010) results, in particular, that "There is no substantial change in the numbers recorded from 2009 to 2011." (page 8) needs to be further qualified. A stable number of frogs each year over a relatively short time frame could result from a variety of factors (such as low mortality or in-migration) and is not necessarily confirmation of sustainable breeding.

To meet HDC's requirements regarding management of contamination and frog habitat at the Ponds it is recommended that these data gaps are addressed by HDC.

1.2.3 Capping Strategy

The objectives of the capping strategy were to "*reduce risks to the environment associated with migration of contaminated groundwater and to prevent the risk of biological harm associated with contaminated soil and groundwater*" (GHD, 2010b). This objective had the associated objectives of preserving and maintaining habitat for shorebirds and other threatened species, and endangered ecological communities.

The strategy assessed the KIWEF based on sub-areas, with each sub-area assessed for the requirement for capping, and the effects that capping may have on the ecology. The locations of those sub-areas are presented on Figure 1. In terms of impacts to ecology, in particular the ecology of the Green and Golden Bell Frog, the following sub-areas were important:

- K1 This sub-area presents a low risk to the surrounding environment from contamination. Capping of this area would have a significant impact on the ecology of the area.
- K2 This sub-area presents a low to moderate risk to the surrounding environment from contamination.
 Capping of this area could impact on Green and Golden Bell Frog habitat.
- K3 This sub-area presents a low to moderate risk to the surrounding environment from contamination. Capping of the fringing areas of this sub-area may have an impact on Green and Golden Bell Frog habitat. Therefore, capping is suggested only up to within 30 m of that habitat, with the exception of the area located near K3/1W.
- K4 (deep pond) Contamination in this sub-area presents a low risk to the environment. However, filling and capping of this sub-area will have a significant impact on Green and Golden Bell Frog habitat, and the overall ecology of the area.
- K6 This sub-area presents a low risk from contamination. However, capping of this sub-area will have a significant impact on the ecology of the area.
- K7 The sub-area presents a low to moderate risk to the environment from contamination. Capping of the edges of the site will significantly impact on Green and Golden Bell Frog habitat.
- K26/K32 cells These cells present a high risk to the environment. However, they also support Green and Golden Bell Frog habitat. Capping is not recommended, but rather a monitoring and risk assessment be completed. Details of recommended actions for the K26/K32 Ponds are presented in an Action Plan (Golder, 2011).

Based on the above assessment, a capping strategy was developed that minimised the impacts to Green and Golden Bell Frog habitat. A brief summary of the other sub-areas, suggested for capping, is provided below.

- K5 (excluding pond 5) This sub-area presents a low to moderate risk to the environment from contamination. There is no significant Green and Golden Bell Frog habitat in this area; therefore, capping is an option.
- Pond 5 Migration of contaminants from this sub-area may impact the estuarine aquifer. This sub-area does not support significant Green and Golden Bell Frog habitat. Therefore, capping is an option.
- K10 (excluding K26/K32) The sub-area presents a low to moderate risk to the environment from contamination. The BOS area presents a moderate risk to the environment. Capping is suggested for this area.

1.3 Other Relevant Management Plans and Guidelines

This GGBF Management Plan should be read and in conjunction with the following management plans and guidelines, which are relevant to the Green and Golden Bell Frog population on Kooragang Island and the KIWEF:

- Coal Export Terminal Green and Golden Bell Frog Management Plan (Newcastle Coal Infrastructure Group (NCIG) (Document No. GGBFMP-R01-E.DOC, 2007)) (the NCIG management plan)
- Draft Management Plan for the Green and Golden Bell Frog Key Population in the Lower Hunter (Department of Environment and Climate Change (DECC) (NSW) 2007) (the Lower Hunter management plan)
- Significant impact guidelines for the vulnerable Green and Golden Bell Frog (Litoria aurea) (Department of Sustainability, Environment, Water, Populations and Communities (DSEWPC), Nationally threatened species and ecological communities; Background paper to the EPBC Act policy statement 3.19, 2009)
- Best practice guidelines: Green and Golden Bell Frog habitat (DECC, 2008)
- Protecting and restoring Green and Golden Bell Frog habitat (DECC, 2008)
- Draft Recovery Plan for the Green and Golden Bell Frog (Litoria aurea). (DECC, 2005)
- Threatened Species Management Information Circular No.6, Hygiene Protocol for the Control of Disease in Frogs (NPWS, 2001) (the hygiene protocol) (Appendix A).

1.4 Project Approval

This GGBF Management Plan has been developed in order to partly address the KIWEF site's *Approval of Surrender of Licence Number 6437*, dated 8 December 2010, Condition 5.b), which requires the following:

b) The licensee shall prepare and submit a Green and Golden Bell Frog Management Plan to the EPA for approval by 13 April 2011. The Plan shall encompass the entire premises occupied by the licensee and include, but not be limited to:

i) Management measures to be undertaken to minimise the spread of the amphibian Chytrid fungus including:

(i) the training of project personnel in site hygiene management; and

(ii) site hygiene procedures for project personal, mobile plant and equipment, in accordance with the NPWS Hygiene Protocol for the Control of Disease in Frogs 2001; and

ii) Measures to maintain, restore and enhance Green and Golden Bell Frog habitat, including movement corridors across the site.

Additionally, obligations exist under the DSEWPC's *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) as to the protection of this nationally threatened species. These obligations are detailed in the EPBC Act policy statement 3.19 (see above for reference), as well as the significant impact criteria set out in the NSW *Threatened Species Conservation Act 1995* (TSC Act).

1.5 Objectives of this Plan

In relation to Green and Golden Bell Frogs on the KIWEF site, one of the overall aims of the KIWEF landfill closure works is to manage those works in a manner that does not impact threatened species and their habitat, and to restore small areas of temporary disturbance to their original (or better) condition. To that end, the objectives of this GGBF Management Plan are:

1) To maintain the existing Green and Golden Bell Frog populations supported on the KIWEF site.

- 2) To reduce the spread of the amphibian Chytrid fungus (Batrachochytrium dendrobatidis).
- 3) To protect the existing Green and Golden Bell Frog habitat on the KIWEF site.
- 4) To increase connectivity between the existing areas of Green and Golden Bell Frog habitat on the KIWEF site.
- 5) To restore Green and Golden Bell Frog habitat that may be disturbed during the landfill closure works to a condition as-good or better than prior to the works.

Hence, this GGBF Management Plan aims to assist HDC in the implementation of appropriate environmental management measures during the KIWEF closure works.

1.6 Scope and Use of this Plan

The scope of this GGBF Management Plan covers that area known as the KIWEF (Figure 1), before, during and after landfill closure works.

This GGBF Management Plan has been prepared in accordance with the relevant state guidelines as identified in Section 1.3.

This GGBF Management Plan will be reviewed and updated by those responsible for undertaking the detailed design and associated documentation to ensure that it is current at the time that the landfill closure works are tendered. Once tendered, the Contractor will incorporate the revised GGBF Management Plan into their Environmental Management Plans (EMP). Where there is any conflict between the provisions of this GGBF Management Plan and Contractors' obligations under their respective contracts, including the various statutory requirements (that is, licences, permits, project approval conditions and relevant laws), the contract and statutory requirements are to take precedence. In the case of any real or perceived ambiguity between elements of this GGBF Management Plan and the above statutory requirements, the Contractor shall first gain clarification from HDC, prior to implementing that element of this GGBF Management Plan over which the ambiguity is identified.

It is intended that this GGBF Management Plan should complement those studies identified in Section 1.2. To that end, this management plan should be supplemented by publicly available monitoring results collected by others for projects on Kooragang Island. For example, it is understood that the NCIG plan requires monitoring to occur on an annual basis until 2020, as outlined in the EPBC Act Particular Matter conditions for that project. The NCIG monitoring data will be useful input into management of Green and Golden Bell Frogs on the KIWEF site.

1.7 Structure of this Plan

The structure of this GGBF Management Plan is provided below. This structure has been adopted to address the requirements as specified in the HDC brief (document number HDC141), and be in accordance with required guidelines.

- Section 2: Provides a profile of the Green and Golden Bell Frog, including its key identifying features in the field, similar species on the KIWEF site, general ecology relevant to the KIWEF site, its conservation status and distribution on the KIWEF site.
- Section 3: Details the management procedures to be implemented, including identification and delineation of disturbance areas, pre-work surveys, identification of relocation areas, relocation procedures and rehabilitation of disturbed habitat, environmental induction training and site hygiene management for Chytrid fungus.
- Section 4: Outlines the monitoring programme for the KIWEF site.
- <u>Section 5:</u> Response criteria and mitigation measures, including comparison with previous data collected at the site, and procedures to be followed if a decline in the Green and Golden Bell Frog population is detected.

- Section 6: Lists the reporting and review requirements of this management plan.
- <u>Section 7:</u> Lists references cited in this Green and Golden Bell Frog Management Plan and other supporting information.

: J:\GIS\Jobs\117623029_HDC_Frog Management Plan\Workspaces\117623029_F004.mxd

2.0 SPECIES PROFILE – GREEN AND GOLDEN BELL FROG (LITORIA AUREA)

2.1 **Conservation Status**

2.1.1 Listina

The Green and Golden Bell Frog's conservation status is listed as follows:

- Endangered under the NSW Threatened Species Conservation Act 1995
- Vulnerable under the federal Environmental Protection and Biodiversity Conservation Act 1999.

2.1.2 **Known Populations**

The Green and Golden Bell Frog is estimated to have disappeared from 90% of its former range within NSW over the last 30 years (Pyke and White, 1996; DECC, 2007), although populations in Victoria are believed to be secure (Gillespie, 1996).

There are about 45 known populations of Green and Golden Bell Frog within NSW (DECC, 2007). Of these, only a few occur in conservation reserves; Kooragang Island Nature Reserve supports the closest protected population to the KIWEF site (DECC, 2007). Historically, this species was widespread across much of the Hunter Valley; however, it is now believed to be restricted to four key populations:

- a large population on Kooragang Island (including the KIWEF site)
- small, isolated populations at Sandgate on the margins of Hexham Swamp
- a meta-population in the Gillieston Heights/East Maitland, Ravensdale areas (also including Wentworth Swamp)
- a meta-population in the Ravensworth/Liddell/Bayswater area.

2.1.3 **Management and Recovery Plans**

To "ensure that the Lower Hunter population is successfully managed and monitored such that the species continues to persist in the Lower Hunter and that 'measures' of the two populations' viability are maintained or improved over time", the following key documents are important:

- Draft Management Plan for the Green and Golden Bell Frog Key Population in the Lower Hunter (Department of Environment and Climate Change (DECC) (NSW) 2007) (the Lower Hunter management plan)
- Draft Recovery Plan for the Green and Golden Bell Frog (Litoria aurea)(DECC, 2005).

2.2 **Key Distinguishing Features**

The following provides some key diagnostic features that are important for quick and easy field-identification of this species.

2.2.1 **Adult Frogs**

19 April 2011

- Relatively large, muscular species with robust body form and smooth skin compared to other species known to inhabit the KIWEF site (Barker et al., 1995).
- The background colouration is usually green, most often with irregular large spots and/or stripes of gold (Barker et al., 1995), refer to Figure 2. It should be noted that adults can vary considerably in pattern; however, the background colouration will always be green.

- Males vary in size from 60 to 70 mm (snout to vent length (SVL)); females vary from 65 to 110 m SVL (Tyler and Knight, 2009). Typically, most individuals being in the range of 60 to 80 mm SVL (DEC, 2005).
- A white or cream stripe extends from above the nostril, over the eye and ear (tympanum) and continues as a fold down the side (Robinson, 1998). There is usually a darker stripe below the white stripe, and another pale stripe from below the eye, extending to the base of the forearm (Robinson, 1998).
- The groin area, and behind the thighs, is usually pale blue or bluish-green, particularly in breeding males (Tyler and Knight, 2009). Mature males may also have a yellowish darkening of the throat area (DEC, 2005).
- The tympanum is usually brown (Tyler and Knight, 2009).
- The belly is usually creamish-white (DEC, 2005); the lower sides of the body are adorned with raised glandular, creamish-coloured spots of irregular size.
- The eye has a horizontally elliptical pupil and a golden yellow iris. The toes are three-quarters to nearly fully webbed (Robinson, 1998).

Figure 2: Adult Green and Golden Bell Frog (Litoria aurea) (Source: A. White (2007), as in the NCIG plan)

2.2.2 Tadpoles

- Relatively large, reaching 65 to 100 mm at limb bud development stage (DEC, 2005). May be confused with other large-bodied tadpoles of species in the KIWEF site; for example, Peron's Tree Frog (*Litoria peronii*).
- Deep bodied and possess long tails with a high fin that extends almost half way along the body (refer to Figure 3).
- Although not typically used in field identification given the need for a microscope, the mouthparts consist of two upper and three lower labial rows (Anstis, 2002).

Figure 3: Tadpole Green and Golden Bell Frog (Litoria aurea) (Source: A. White (2007), as in the NCIG plan)

2.2.3 Similar Species within the KIWEF Area

The Green and Golden Bell Frog should not be confused with any other species in the KIWEF area, given its very distinctive features and large size, wart-free skin, expanded finger and toe pads, and lack of spotting or marbling on the hind side of the thigh (Robinson, 1998).

Nevertheless, to the untrained eye, metamorphosing individuals may be confused with the adults and metamorphs of the following species that are known to occur on the KIWEF site:

Eastern Dwarf Tree Frog (*Litoria fallax*)

This species is also green, but lacks any of the golden markings on the back and presents with a plain, single colour.

Peron's Tree Frog (*Litoria peronii*)

Adults have bright yellow with black mottling on armpits, groin, and backs of thighs. The back texture is rough, and often is covered with faint, emerald spots, giving its other common name, the Emerald-spotted Treefrog.

Broad-palmed Rocket Frog (Litoria latopalmata)

This species ranges from light to dark brown on its back, sometimes with darker blotches. The backs of the thighs are yellow and dark brown.

Spotted Marsh Frog (*Limnodynastes tasmaniensis*)

Adults usually have large regularly-shaped olive green blotches on the back and sometimes have a yellow, red, or orange mid-dorsal stripe. The background colouration is not green.

2.3 Aspects of Ecology Important for Management

2.3.1 **Preferred Habitat**

The Green and Golden Bell Frog can be regarded as somewhat of a habitat generalist, dispersing widely and maturing early. It is known to inhabit marshes, dams and stream sides and appears to prefer those water bodies where Bulrushes (*Typha* spp.) or Spikerushes (*Eleocharis* spp.) grow (NPWS, 1999). In the Lower Hunter region, such plant species as Salt Marsh Rush (*Juncus kraussi*), Coast Club Rush (*Schoenoplectus subulatus*), and Salt Couch (*Sporobolus virginicus*) are indicators of habitat suitability for Green and Golden Bell Frogs (DECC, 2007). Such habitat is typically unshaded, free of Plague Minnow (*Gambusia holbrooki*), have a grassy area nearby and diurnal sheltering sites (NPWS, 1999).

Green and Golden Bell Frogs are also known to inhabit highly disturbed sites (NPWS, 1999), such as the KIWEF site.

Typically, Green and Golden Bell Frogs will require habitat for breeding, foraging, shelter, movement and over wintering. All such habitat types occur across the KIWEF site, and have been incorporated under the banner of known and potential Green and Golden Bell Frog habitat by GHD (2010a). These habitat areas are indicated on Figure 1.

2.3.2 Habits

The Green and Golden Bell Frog is frequently active during the day, although it is known to forage at night on insects, as well as other frogs (Cogger, 2000; Barker *et al.*, 1995; NPWS, 1999). Tadpoles are known to feed on algae and other vegetative matter (NPWS, 1999; Anstis, 2002).

The Green and Golden Bell Frog exhibits strong migration tendencies, and is known to travel significant distances across often seemingly inhospitable habitat (DECC, 2007). Distances of up to 1.5 km in a single day/night are not unknown (Wellington, 1998; Pyke and White, 2001; DECC, 2007). It should be noted that such movements most often occurred during or immediately after significant rain events.

2.3.3 Breeding

The Green and Golden Bell Frog usually breeds in summer when conditions are warm and wet, typically after rain (Cogger, 2000; Barker, *et al.*, 1995). The core breeding period for this species is generally accepted to be between September and February (DECC, 2007), provided sufficient rainfall occurs during this time.

Males call while floating in water and females produce a floating raft of eggs, which gradually settle to the bottom (NPWS, 1999).

Tadpoles take around six weeks to develop depending on environmental conditions (for example, temperature) (Pyke and White, 1996; NPWS, 1999).

Adult male Green and Golden Bell Frogs may only live for around two years in a hostile environment but, typically, life expectancy is likely to vary markedly according to the quality of the habitat (Goldingay and Newell, 2005).

2.3.4 Threats

Frog Chytrid Fungus (FCF) has been identified as a key threatening process, at both the state and national level, for the Green and Golden Bell Frog (DSEWPC, 2009). FCF is widespread on Kooragang Island and Hexham Swamp, the other key Green and Golden Bell Frog population in the Newcastle area (DECC, 2007).

Recent evidence suggests that occasional exposure to saline influences and/or certain contaminants may be attenuating the effects of the FCF (DECC, 2007). Such saline and polluted conditions occur on the KIWEF site. Hypotheses supporting this scenario are presently being tested by M. Stockwell and M. Mahoney from the University of Newcastle (NCIG, 2007).

GGBF MANAGEMENT PLAN

3.0 MANAGEMENT PROCEDURES

3.1 Identification and Delineation of Disturbance Areas

Known and potential Green and Golden Bell Frog habitat is located across the KIWEF site and surrounds. GHD (2010a) identified and mapped that habitat (as identified in Figure 5.5 of their report), which is presented in Figure 1 of this GGBF Management Plan. Prior to capping works commencing, this habitat will be clearly identified on the ground (with appropriate signage), and the locations of it communicated to personnel undertaking works on the site. This communication will be undertaken as part of the site induction (refer to section 3.3), and will include obligations of personnel to maintain and protect that habitat.

Ponds P and Q (that is, cells K26 and K32) will be subject to a separate Action Plan (Golder, 2011) due to their significance as habitat and the presence of contaminated soil and groundwater.

3.2 Identification of Areas of Disturbance to Habitat

As part of the capping strategy, a small proportion of the known and potential Green and Golden Bell Frog habitat may be disturbed. This habitat area comprises the fringing habitat adjacent to Deep Pond, that is the area located near K3/1W and the BOS area (Figure 1).

The frogs will be relocated within the KIWEF during the capping works.

3.3 Environment Induction and Training

All HDC personnel, contractors and sub-contractors will undergo environmental induction and training before commencing work on-site. As it pertains to the Green and Golden Bell Frog, information addressed during this training will include (NCIG, 2007):

- Green and Golden Bell Frog profile and identification (Section 2).
- Identification of Green and Golden Bell Frog habitat areas. Project personnel will be prohibited from entering Green and Golden Bell Frog habitat areas located outside defined works areas.
- Site hygiene management in accordance with the Hygiene Protocol (Section 3.4).
- Procedures to be followed in the event Green and Golden Bell Frogs are found (Section 3.6).

3.4 Site Hygiene Management

The proposed hygiene management protocol described below largely follows that prepared by NCIG (2007), which has been accepted by OEH.

FCF (refer to section 2.3.4) has the potential to adversely affect Green and Golden Bell Frogs. It is known to occur on Kooragang Island, and potentially on the KIWEF site. Infection occurs through waterborne zoospores released from an infected amphibian in water (NPWS, 2001) and the fungus infects both frogs and tadpoles (Berger *et al.*, 1999). Therefore, the spread of FCF can occur via the movement of water around the site and/or soil attached to equipment (both plant and personal protective equipment).

Typical clinical signs of frogs infected with FCF (after Berger et al., 1999) include:

- lethargy
- loss of appetite
- skin discoloration
- presence of excessive sloughed skin
- sitting unprotected during the day with hind legs held loosely to the body.

3.4.1 Hygiene Training

To reduce the likelihood of spreading FCF, all HDC employees and contractors involved in activities in areas of known habitat for the Green and Golden Bell Frog (and other amphibian species) will be trained in site hygiene management in accordance with the hygiene protocol (Appendix A). This will be part of the environmental induction and training (Section 3.3).

3.4.2 Inspection and Disinfection of Mobile Plant

Any mobile plant entering and leaving the KIWEF site during the closure and capping activities will be routinely disinfected at a designated wash bay.

Similarly, personal protective equipment (PPE) of HDC employees and contractors entering and leaving the site will be disinfected as a matter of routine, following the methods outlined in the Hygiene Protocol (Appendix A).

Inspection and disinfection of mobile plant, and affected PPE, will be undertaken at a designated, concretebunded disinfection area at the entrance of the KIWEF site. The location of this area, and the disinfection procedure, will be incorporated into the site induction and training programme (refer to Section 3.3).

3.5 **Pre-works Surveys for Disturbance Areas**

Pre-works surveys will include targeted active searches of potential Green and Golden Bell Frog habitat located within proposed disturbance areas. These surveys will be undertaken by a suitably qualified and licensed ecologist.

The pre-works surveys (and, if applicable, relocation activities) will be conducted to minimise disruption to breeding activities and the need to relocate tadpoles or metamorphs, where practicable. All these activities will be conducted in accordance with the relevant measures outlined in the hygiene protocol (Section 3.4).

Habitat resources typically associated with the lifecycle components of the Green and Golden Bell Frog (for example, ponded areas, rocks, logs, tussock forming vegetation and other cover) will be searched during a diurnal visual inspection.

Following the diurnal habitat searches, a nocturnal habitat search may be conducted to assess nocturnal usage (that is, breeding/calling) in the habitat supported in the disturbance area, if the surveys are conducted during the core breeding season. The nocturnal habitat searches may include:

- searching of habitat features, which were searched during the day
- spotlighting
- call play-back.

In the event that any Green and Golden Bell Frogs are observed during the diurnal or nocturnal searches, the relocation procedures outlined in Section 3.6 will be initiated prior to the commencement of disturbance works. In some cases a frog-proof fence may be used to protect the frogs in-situ or to exclude frogs from the surveyed area.

The results of the pre-works surveys will be recorded and reported in the Annual Environmental Management Report (AEMR) (Section 6).

3.6 Green and Golden Bell Frog Relocation Procedures

The proposed relocation procedure described below largely follows that proposed by NCIG (2007), which has been accepted by OEH.

3.6.1 Relocation Procedure during Pre-works Surveys

In the event a Green and Golden Bell Frog is identified within the disturbance areas during pre-works surveys, the following relocation procedure will be initiated:

- a) The ecologist undertaking the pre-clearance survey will capture the frog.
- b) If the frog appears to be healthy:
 - a. A suitable release location in the immediate vicinity of the disturbance area, yet outside of potential areas of disturbance, will be identified by the ecologist.
 - b. The frog will be released into the relocation area. Any frog to be relocated will be held in a cool, dark, moist place until nightfall. Where practicable, relocation will be timed to coincide with periods of recent rainfall to optimise chances of survival of the frog.
- c) If the frog appears to be sick, or is dead:
 - a. the procedures outlined in Section 3.6.3 will be followed.

Relocation of Green and Golden Bell Frogs during pre-works surveys will be conducted in accordance with the relevant measures outlined in the hygiene protocol (Section 3.4).

Details of Green and Golden Bell Frogs that are relocated (that is, lifecycle stage and sex of individual [if possible], location where found and location of release) conducted during pre-works surveys will be recorded and reported in the AEMR (Section 6).

3.6.2 Relocation Procedure Outside of Pre-works Surveys

In the event a frog is observed within the KIWEF site outside of the designated pre-works surveys (for example, within an area already disturbed), and is thought to be a Green and Golden Bell Frog, the following relocation procedure will be initiated if the frog is likely to be harmed by the capping works:

- a) The observer will notify the HDC's Environmental Representative, or suitably-qualified ecologist, of the frog's location.
- b) The Environmental Representative, or suitably-qualified ecologist, will determine whether the frog is likely to be harmed by works.
- c) If the frog is likely to be harmed by works, a suitably-qualified ecologist, will capture the frog.
- d) If the frog appears to be healthy:
 - a. A suitable release location (that is, one of the potential relocation areas identified on Figure 1) will be identified by the ecologist.
 - b. The frog will be released into the relocation area. Any frog to be relocated will be held in a cool, dark, moist place until nightfall. Where practicable, relocation will be timed to coincide with periods of recent rainfall to optimise chances of survival of the frog.
- e) If the frog appears to be sick, or is dead:
 - a. the procedures outlined in Section 3.6.3 will be followed.

Relocation of Green and Golden Bell Frogs outside pre-works surveys will be conducted in accordance with the relevant measures outlined in the hygiene protocol (Section 3.4).

Details of Green and Golden Bell Frogs that are relocated (that is, lifecycle stage and sex of individual [if possible], location where found and location of release) during pre-work surveys will be recorded and reported in the AEMR (Section 6).

3.6.3 Procedures for Handling Sick or Dead Green and Golden Bell Frogs

Table 1 presents the range of symptoms that may be exhibited by sick or dying frogs, while Table 2 provides diagnostic behaviour tests, which can be used to determine if a frog is sick (for example, infected with FCF) (after NCIG, 2007).

Table 1: Symptoms of sick and dying frogs

Appearance			Behaviour			
•	Darker or blotchy upper (dorsal) surface Swollen hind limbs Very thin or emaciated Reddish/pink-tinged lower (ventral) surface and/or legs and/or webbing or toes Skin lesions (sores, lumps) Infected eyes Obvious asymmetric appearance	•	Lethargic limb movements, especially hind limbs Abnormal behaviour (e.g. a nocturnal burrowing frog sitting in the open during the day and making no vigorous attempt to escape when approached) Little or no movement when touched			

Source: after NPWS (2001)

Table 2: Diagnostic behaviour tests - sick frogs will fail one or more of the following tests

Test		Healthy			Sick	
	Gently touch with finger	•	Frog will blink.		Frog will not blink.	
	Turn frog on its back	•	Frog will flip back over.		Frog will remain on its back.	
•	Hold frog gently by its mouth	•	Frog will use its forelimbs to try to remove grip	•	No response from frog	

Source: after NPWS (2001)

In the event that a Green and Golden Bell Frog appears to be sick, or is dead, the following procedures will be followed (after NPWS, 2001):

- Disposable gloves will be worn when handling all frogs, as well as sick or dead frogs.
- To prevent cross-contamination, new gloves and a clean plastic bag will be used for each frog specimen.
- Frogs exhibiting one or more of the symptoms for sick frogs listed in Table 1 or 2, and considered unlikely to survive transportation will be euthanised¹.
- Sick frogs likely to survive transportation will be placed into either a moistened cloth bag with some damp leaf litter, or into a partially-inflated, clean plastic bag with damp leaf litter. All frogs will be kept separate during transportation.
- Dead frogs will be kept cool and preserved as soon as possible. The belly of the frog will be cut open and the specimen placed in preservative (approximately 10 times the volume of the specimen). Specimens will be preserved in either 65% ethanol or 10% buffered formalin.
- The recipient of the sick or dead frog will be contacted to confirm the appropriate procedure prior to transport².

¹ Terminally ill frogs will be placed into a container with the bottom covered with 3% chloral hydrate (NPWS, 2001).

- Containers will be labelled with the following details: date, location and species (if known).
- Standardised collection form will be filled out and a copy sent with the specimen (in Appendix A).
- Individual containers will be used for each specimen.

Details of sick or dead Green and Golden Bell Frogs found at the KIWEF site will be recorded and reported in the AEMR (Section 6).

² A list of potential sick and dead frog recipients is provided in Attachment 4 (NPWS, 2001), including Associate Professor Michael Mahony of the School of Biological Sciences, University of Newcastle.

4.0 GREEN AND GOLDEN BELL FROG MONITORING PROGRAMME

Baseline monitoring of the Green and Golden Bell Frog has been undertaken by GHD (2010 and Umwelt (2011).

NCIG has also implemented a monitoring programme that collects data that includes the Green and Golden Bell Frog populations on the KIWEF site.

The NCIG monitoring will be conducted annually until 2020 and then three-yearly till 2030. On the basis that the NCIG monitoring programme continues to be implemented, HDC do not propose to undertake any further monitoring, other than that specified in the Action Plan for the K26/K32 Ponds (Golder, 2011).

HDC propose to annually review the NCIG data to ensure that it meets HDC's requirements. The overall objective of HDC's review of the Green and Golden Bell Frog monitoring programme is to monitor the dynamics of the Green and Golden Bell Frog populations supported within known and potential habitat areas within the KIWEF site. The intention of the review programme will be to ascertain if the landfill closure works have an effect on the population.

Monitoring parameters that will be used for comparison will include, yet not be limited to:

- a) Green and Golden Bell Frog presence/absence, distribution, habitat utilisation, behaviour and abnormalities.
- b) observations of other frog species distribution, relative abundance and abnormalities.
- c) habitat condition.
- d) date
- e) time of day
- f) rainfall (mm)
- g) site location (GPS co-ordinates and map location)
- h) survey method utilised
- i) sampling effort
- j) habitats surveyed
- k) weather conditions (including temperature)
- I) number of observers
- m) photographs taken

HDC will report to OEH annually for 5 years following the completion of the landfill closure works, unless analysis shows that Green and Golden Bell Frog populations are being impacted, then further reporting will be undertaken until a date agreed with OEH.

Monitoring and research to understand better the extent and dynamics of Green and Golden Bell Frog populations is a proposed action of the Draft Recovery Plan (DECC, 2005). This action has been adopted as a strategy to achieve the objectives of the Lower Hunter Management Plan. The results of this monitoring programme would contribute to this action/strategy.

The results of the monitoring programme will be recorded and reported in the AEMR (Section 6).

5.0 RESPONSE CRITERIA AND SPECIFIC MITIGATION AND MANAGEMENT MEASURES

The following proposed mitigation measures have been developed based on a review of information provided by GHD (2010a) and a review of site conditions.

5.1 Management of All Disturbance Areas

The following mitigation measures will be implemented to manage areas proposed for disturbance.

- The boundaries of all Green and Golden Bell Frog habitat will be clearly identified on the ground.
- Appropriate erosion and sediment control structures will be installed at least 30 metres upslope of all such habitat areas. These erosion and sediment control structures will be regularly inspected and maintained, particularly after significant rainfall events.
- All plant entering and leaving the KIWEF site will be, as a matter of routine, disinfected via a wash bay. The location and procedures involved at this wash bay will form part of the site induction and training (see Section 3.3). Records will be kept.
- Similarly, all HDC employees and contractors involved in activities in areas of known habitat for the Green and Golden Bell Frog (and other amphibian species) will be trained in site hygiene management in accordance with the hygiene protocol (Appendix A). This will be part of the environmental induction and training (Section 3.3). Records will be kept.
- All PPE in contact with soil, particularly boots, of HDC employees and contractors entering and leaving the site will be disinfected as a matter of routine, following the methods outlined in the Hygiene Protocol (Appendix A).
- All disinfection processes will be monitored and controlled at the KIWEF site's entry and exit point. The location of these disinfection bays, and the obligations of disinfection, will be communicated during the site induction and training (Section 3.3).
- All water required for dust suppression will be drawn from ponds established for the purpose. No water for dust suppression will be drawn from current ponds on the site. The establishment of dedicated dust suppression ponds will be undertaken to prevent the potential spread of Plague Minnow into ponds currently free of this species. The location and procedure for those dedicated dust suppression ponds will be communicated during the site induction and training (Section 3.3).
- Stormwater diversion measures, if required, will be put in place to maintain the current hydrological regime for the site.
- If practicable, the capping and grading activities will be scheduled to occur outside of the core Green and Golden Bell Frog breeding period (that is, September to March), especially in areas adjacent to known and potential breeding habitat.

5.2 Specific Management Measures for Disturbed Areas

The following mitigation measures will be implemented to manage areas proposed for disturbance. It should be noted that these measures do not negate the need for the measures outlined in Section 5.1.

- The disturbance area will be clearly delineated on the site plan and on the ground. The boundaries of the area and its location will be made known to all personnel involved during the site induction (refer to Section 3.3).
- One week prior to works commencing in the disturbance area, a pre-works survey will be conducted by a qualified ecologist (refer to Section 3.5 for a suggested survey protocol).

- In the event that any Green and Golden Bell Frogs are identified in the area, they will be relocated (using appropriate amphibian hygiene protocols) to known and suitable Green and Golden Bell Frog habitat areas immediately adjacent to the disturbance footprint (refer to Section 3.6 for appropriate relocation procedures).
- The works will be scheduled to occur outside of the core breeding period for Green and Golden Bell Frogs, that is, September to March.
- An on-site, suitably-qualified ecologist will be available during all clearing and capping works undertaken in the habitat areas to be disturbed. This person will be available to relocate Green and Golden Bell Frogs that may be found in the disturbance footprint during capping activities.
- In an attempt to limit the potential for Green and Golden Bell Frogs to enter the disturbance footprint, and if practicable, a frog-proof barrier will be erected around the disturbance footprint.
- Appropriate erosion and sediment control measures will be put in place around the disturbance area, prior to any works commencing, to prevent sediment from moving into adjacent habitat.
- Once works are complete, the restoration and rehabilitation of that habitat will be undertaken in accordance with a rehabilitation and revegetation plan.

5.3 Measures to Enhance Restore and Maintain Habitat

It is noted that the proposed capping works have been designed to minimise impacts on Green and Golden Bell Frog Habitat and will impact upon only two small areas.

It is anticipated that the mitigation measures presented in Sections 5.1 and 5.2 will assist in the management of the Green and Golden Bell Frogs, and their habitat on the KIWEF site, during and immediately following the landfill closure work, and the associated activities. In addition to those, the following mitigation measures have been developed to assist, where practicable, in the enhancement, restoration and maintenance of Green and Golden Bell Frog habitat following the completion of the landfill closure works.

- The capping strategy has been designed to limit and ultimately reduce the exposure of potential Green and Golden Bell Frog habitat, and the wider ecosystems of Kooragang Island, to soil and groundwater contaminants.
- As part of the rehabilitation and revegetation plan for the KIWEF site, open stormwater infrastructure across the KIWEF site may be planted with species known to be favoured by Green and Golden Bell Frogs. This revegetation and rehabilitation strategy will include a 2 metre wide buffer on either side of the stormwater drains. The intention of these areas is to provide movement corridors for Green and Golden Bell Frogs across the site.
- The capped areas will ideally be designed to shed water to table drains, which, in a similar manner to other stormwater infrastructure, will be vegetated with species known to be favourable to Green and Golden Bell Frogs.
- Drainage culverts will, where practicable, be vegetated and lined with rocks and objects that may provide temporary frog refuge, in the event that a frog seeks to traverse the future capped area of KIWEF.
- The drainage culverts in the NCIG rail loop may provide additional areas that can be rehabilitated to facilitate the migration and dispersal of the Green and Golden Bell Frog (Connell Hatch, 2008, in GHD, 2010b).

5.4 Response Criteria

5.4.1 General Site Environmental Management

As part of the overall environmental management plan for the site, during the landfill closure works, the HDC's environmental representative will conduct weekly inspections of all the management measures identified in Sections 5.1, 5.2 and 5.3. The results of these inspections will be recorded and a summary provided in the AEMR.

Should non-conformances be identified, HDC's environmental representative will contact the Site Foreman within 24 hours and request a remediation action. The Site Foreman will have 48 hours to correct the non-conformance.

5.4.2 Population Monitoring

If the results of the monitoring programme indicate a decline in Green and Golden Bell Frog numbers across the site, which cannot be attributed to natural population fluctuations and variability, and is potentially a direct result of the landfill closure works, specific response criteria will be developed by HDC, in consultation with the OEH. The aim of these response criteria will be to determine whether declining populations (if evident from the monitoring programme [Section 4]) are directly attributable to the capping project.

6.0 REPORTING AND REVIEW

In accordance with the *Approval of Surrender of Licence Number 6437*, the Director-General will be notified of any incident with actual or potential significant off-site impacts on people or the biophysical environment, as soon as practicable after the occurrence of the incident. The Director-General will be provided with written details of the incident within seven days of the date on which the incident occurred.

HDC will prepare an Annual Environmental Management Report (AEMR) that:

- a) Reviews the performance of the capping project against this management plan.
- b) Provides an overview of environmental management actions and summarises monitoring results over the 12 month reporting period.
- c) Continues on an annual basis for a minimum of five years following completion of the Landfill Closure Works.
- d) Will be phased out on presentation of adequate information to establish that the Landfill Closure Works have had no measurable impacts to Green and Golden Bell Frog populations on the KIWEF site. In the unlikely event that changes in the Green and Golden Bell Frog population are observed, which appear to be attributable to the Landfill Closure Works, extended review will be undertaken. This may involve a more detailed monitoring and investigation programme to address the potential cause of the decline in those areas. The programme will aim to identify direct evidence indicating that the Landfill Closure Works contributed to the decline. The details of that programme will be developed through discussion with OEH.

The AEMR will be distributed to relevant government agencies and stakeholders, and copies provided to other interested parties, if requested.

In accordance with the *Approval of Surrender of Licence Number 6437*, this management plan will be made available on the HDC website.

7.0 REFERENCES

Abbasi, SA. and Soni, R (1984). Teratogenic effects of chromium (vi) in environment as evidenced by the impact on larvae of amphibian *Rana Tigrina*: implications in the environmental management of chromium. *International Journal of Environmental Studies* 23(2): 131-137.

Anonymous (1999). Effects of sublethal lead exposure on the behaviours of Green Frog (*Rana clamitans*), Bullfrog (*Rana catesbiana*) and American Toad (*Bufo americanus*) tadpoles. *Marine and Freshwater Behaviour and Physiology* 32(1): 1-16.

Anstis, M (2002). Tadpoles of South-eastern Australia, New Holland, Sydney.

Arrieta, MA, Bruzzone, L, Apartin, C, Rosenberg, CE, Fink, NE and Saliban, A (2004). Biosensors of inorganic lead exposure and effect in an adult amphibian. *Archives of Environmental Contamination and Toxicology* 46(2): 224-230.

Barker, J, Grigg, GC and Tyler, MJ (1995) *A field guide to Australian Frogs*. Surrey Beatty and Sons, Chipping Norton.

Berger, L, Speare, R and Hyatt, A (1999) Chytrid fungi and amphibian declines: overview, implications and future directions. In *'Declines and Disappearances of Australian Frogs'*. (Ed. A. Campbell.) pp. 23-33. Environment Australia, Canberra.

Cogger, HG (2000) Reptiles and Amphibians of Australia. Reed New Holland. Australia.

Department of Environment and Conservation (2005) *Draft Recovery Plan for the Green and Golden Bell Frog (*Litoria aurea). Hurstville, NSW.

Department of Environment and Climate Change (2007) *Draft Management Plan for the Green and Golden Bell Frog Key Population in the Lower Hunter.* Sydney, NSW.

Department of Sustainability, Environment, Water, Populations and Communities (2009) *Significant impact guidelines for the vulnerable Green and Golden Bell Frog (*Litoria aurea), Nationally threatened species and ecological communities; Background paper to the EPBC Act policy statement 3.19.

GHD (2010a). Revised Capping Strategy, Flora and Fauna Impact Assessment, Revision 3

GHD (2010b). Revised Final Landform and Capping Strategy, Revision 4

Goldingay, R.L. and Newell, D.A. (2005) Aspects of the Population Ecology of the Green and Golden Bell Frog Litoria aurea at the Northern End of its Range. Australian Zoologist 33: 49-59.

Marquis, O, Millery, A, Guittonneau, S and Miaud, C (2006). Toxicity of PAHs and jelly protection of eggs in the Common frog Rana temporaria. *Amphibia-Reptilia*: 27(3): 472-475.

Newcastle Coal Infrastructure Group (2007) Coal Export Terminal Green and Golden Bell Frog Management Plan, (Document No. GGBFMP-R01-E.DOC)

National Parks and Wildlife Service (1999) *Threatened Species Information, Green and Golden Bell Frog* Litoria aurea (Lesson, 1829).

National Parks and Wildlife Service (2001) Threatened Species Management Information Circular No. 6 - Hygiene Protocol for the Control of Disease in Frogs.

Pyke, GH and White, AW (1996) Habitat Requirements for the Green and Golden Bell Frog *Litoria aurea* (Anura: Hylidae). *Australian Zoologist* 30: 224-232.

Robinson, M. (1998) A Field Guide to Frogs of Australia. Reed New Holland, Australia.

Tyler, MJ and Knight, F (2009) Field Guide to the Frogs of Australia, CSIRO Publishing, Australia.

Wellington, R (1998) An outline of the currently known state-wide conservation situation of the Green and Golden Bell Frog Litoria aurea: Discussion and Overview. Unpublished Report to the GGBF Recovery Team.

Umwelt (Australia) Pty Limited (2011) March 2011 Green and Golden Bell Frog (Litoria aurea) Survey at the Kooragang Island Waste Emplacement Facility, prepared for HDC.

Rice, TM, Oris, JT and Taylor, DH (2002). Effects of growth and changes in organ distribution of Bullfrog larvae exposed to lead throughout metamorphosis. *Bulletin of Environmental Contamination and Toxicology*, 68: 8-17.

Stabenau, E, *et al.* (2006). Uptake and Elimination of Naphthalene from Liver, Lung, and Muscle Tissue in the Leopard frog (*Rana pipiens*). *Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering* 41(8): 1449-1461.

Wang, MZ. and Jia XY (2008) Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog *Rana nigromaculata*. *Ecotoxicology*: 1-6.

Report Signature Page

GOLDER ASSOCIATES PTY LTD

hs

Mervyn Mason Senior Ecologist

MCM/TC/mcm

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

j:\env\2011\117623029_hdc_frog management plan\reports\117623029-001-r-rev0.docx

APPENDIX A

Hygiene Protocol for the Control of Disease in Frogs

Threatened Species Management Information Circular No. 6

April 2008

hygiene protocol for the control of disease in

tro

Department of Environment & Climate Change NSW

© Department of Environment and Climate Change (NSW), 2008.

* The National Parks and Wildlife Service is part of the Department of Environment and Climate Change

This work is copyright. However, material presented in this protocol may be copied for personal use or utilised for management and educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from DECC.

Department of Environment and Climate Change (NSW) 59-61 Goulburn Street (PO Box A290) Sydney South 1232

Phone:	(02) 9995 5000 (switchboard)
Phone:	131 555 (environment information
	and publications requests)
Phone:	1300 361 967 (national parks information
	and publications requests)
Fax:	(02) 9995 5999
TTY:	(02) 9211 47 23
Email:	info@environment.nsw.gov.au
Website:	www.environment.nsw.gov.au

This document can be sourced from the DECC website: www.environment.nsw.gov.au/resources/nature/hypfrog.pdf

This document should be cited as: Department of Environment and Climate Change (NSW) 2008. Hygiene protocol for the control of disease in frogs. Information Circular Number 6. DECC (NSW), Sydney South.

ISBN 0731363728 DECC 2008/199

Acknowledgments

NSW National Parks and Wildlife Service Declining Frog Working Group who recommended the preparation and provided input into the development of this strategy.

Ross Wellington and Ron Haering (both DECC) the authors of this document.

Thanks to Jack Baker, Lee Berger, Mark Endersby, Jeff Hardy, Frances Hulst, Alex Hyatt, Keith McDougall, Diana Mendez, Deborah Pergolotti, Graham Pyke, Marjo Rauhala, Julie Ravallion, Karrie Rose, Lothar Voigt and Arthur White for their advice and/or technical review.

This hygiene protocol is an adaptation of the Declining Amphibian Population Task Force (DAPTF) Fieldwork Code of Practice and the recommendations of Speare et al. (1999) and has drawn on recommendations from earlier guidelines prepared by Environment ACT.

Foundation for National Parks and Wildlife funded the printing of this protocol.

hygiene protocol for the control of disease in

	frogs
	INTRODUCTIONI
	I.I WHO SHOULD READ THIS DOCUMENT? I
	I.2 BACKGROUNDI
	I.2.1 Amphibian Chytrid FungusI
	I.3OBJECTIVES2
2.	SITE HYGIENE MANAGEMENT
	2.1 DEFINING A SITE
	2.2 ON-SITE HYGIENE
	2.3 HANDLING OF FROGS IN THE FIELD
	2.4 DISINFECTION METHODS
3.	CAPTIVE FROG HYGIENE MANAGEMENT6
	3.1 HOUSING FROGS AND TADPOLES
	3.2 TADPOLE TREATMENT
	3.3 FROG TREATMENT
	3.4 DISPLACED FROGS
	3.4.1 Banana Box Frogs8
	3.4.2 Cane Toads8
	3.4.3 Local Frog Species
4.	SICK OR DEAD FROGS
	4.1 SYMPTOMS OF SICK AND DYING FROGS
	4.2 WHAT TO DO WITH SICK OR DEAD FROGS
	Appendix I HYGIENE PROTOCOL CHECKLIST AND FIELD KIT
	Appendix 2 DESIGNATED SICK AND DEAD FROG RECIPIENTS
	Appendix 3 NSW ANIMAL WELFARE ADVISORY COUNCIL METHODOLOGY 14

introduction

This information circular outlines measures to:

- Prevent or reduce disease causing pathogens being transferred within and between wild populations of frogs.
- Ensure captive frogs are not infected prior to release.
- Deal safely with unintentionally transported frogs.
- Assist with the proper identification and management of sick and dead frogs in the wild.

I.I Who should read this document?

This protocol is intended for use by all researchers, wildlife consultants, fauna surveyors and students undertaking frog field-work. In addition, the protocol should be read by Department of Environment and Climate Change (DECC) personnel, frog keepers, wildlife rescue and carer organisations, herpetological/frog interest groups/ societies, fauna park/zoo operators/workers and other individuals who regularly deal with or are likely to encounter frogs.

This protocol outlines the expectations of the DECC regarding precautionary procedures to be employed when working with frog populations. The intention is to promote implementation of hygiene procedures by all individuals working with frogs. New licences and licence renewals will be conditional upon incorporation of the protocol. The DECC recognises that some variation from the protocol may be appropriate for particular research and frog handling activities. Such variation proposals should accompany any licence application or renewal to the DECC.

I.2 Background

I.2.1 Amphibian Chytrid Fungus

The apparent decline of frogs, including extinctions of species and local populations, has attracted increased international and national concern. Many potential causes for frog declines have been proposed (eg see Pechmann et al., 1991; Ferrero and Bergin, 1993; Pechmann and Wilbur, 1994; Pounds and Crump, 1994; Pounds et al., 1997). However, the patterns of decline at many locations suggest that epidemic disease maybe the cause (Richards et al., 1993; Laurance et al., 1996; Alford and Richards, 1997). Recent research has implicated a waterborne fungal pathogen Batrachochytrium dendrobatidis as the likely specific causative agent in many of these declines both in Australia and elsewhere (Berger et al., 1998; 1999). This agent is commonly known as the amphibian or frog chytrid fungus and is responsible for the disease Chytridiomycosis (Berger et al., 1999).

B. *dendrobatidis* is a form of fungus belonging to the phylum Chytridiomycota. Most species within this phylum occur as free-living saprophytic fungi in water and soil and have been found in almost every type of environment including deserts, artic tundra and rainforest and are considered important primary biodegraders (Powell 1993). B. dendrobatidis is a unique parasitic form of Chytridiomycete fungi, in that it invades the skin of amphibians, including tadpoles, often causing sporadic deaths with up to 100% mortality in some populations. Chytridiomycosis has been detected in over 40 species of native amphibian in Australia (Mahony and Workman 2000). However, it is not currently known whether the fungus is endemic or exotic to Australia.

The infective stage of *B. dendrobatidis* is the zoospore and transmission requires water (Berger et al.,1999). Zoospores released from an infected amphibian can potentially infect other amphibians in the same water. More research is needed on the dynamics of infection in the wild. *B. dendrobatidis* is known to be susceptible to seasonal temperature changes, dehydration, salinity, water pH, light, nutrition and dissolved oxygen (Berger et al., 1999).

I.3 Objectives

The objectives of the hygiene protocol are to:

• Recommend best-practice procedures for DECC personnel, researchers, consultants and other frog enthusiasts or individuals who handle frogs.

- Suggest workable strategies for those regularly working in the field with frogs or conducting fieldwork activities in wetlands and other aquatic environments where there is the potential for spreading pathogens such as the frog chytrid fungus.
- Provide background information and guidance to people who provide advice or supervise frog related activities.
- Provide standard licence conditions for workers engaged in frog related activities.
- Inform Animal Care and Ethics Committees (ACEC) for their consideration when granting research approvals.

Life cycle of frog chytrid fungus from infective freeliving zoospore stage to sporangium (adapted from L. Berger).
2 site hygiene management

A checklist of risk management procedures and recommended standard hygiene kit is provided in Appendix I. Please note Footnote I on page 4. Individuals studying frogs often travel and collect samples of frogs from multiple sites. Some frog populations can be particularly sensitive to the introduction of infectious pathogens such as the frog chytrid fungus. Also, the arrangement of populations in the landscape may make frogs particularly vulnerable to transmission of infectious pathogens. Therefore, it is important that frog workers recognise the boundaries between sites and undertake measures which reduce the likelihood of spreading infection.

Where critically endangered species or populations of particular risk are known to occur, this protocol should be applied over very short distances ie a single site may need to be subdivided and treated as separate sites.

When planning to survey multiple sites, always start at a site where frog chytrid fungus is not known to be present before entering other infected areas.

2.1 Defining a site

Defining the boundary of a site maybe problematic. In some places, the boundary between sites will be obvious but in others, less so. Undertaking work at a number of sites or conducting routine monitoring at a series of sites within walking distance creates obvious difficulties with boundary definitions. It is likely that defining the boundary between sites will differ among localities. It may be that a natural or constructed feature forms a logical indicator of a site boundary eg a road/ track, a large body of water such as a river or the sea, a marked habitat change or a catchment boundary.

As a guiding principle, each individual waterbody should be considered a separate site. When working along a river or stream or around a wetland or a series of interconnecting ponds it is reasonable, in most instances, to treat such examples as a single site for the purposes of this protocol. Such a case would occur in areas where frogs are known to have free interchange between ponds.

Where a stream consists of a series of distinctive tributaries or sub-catchments or where there is an obvious break or division then they should be treated as separate sites, particularly if there is no known interchange of frogs between sites.

2.2 On-site hygiene

When travelling from site to site it is recommended that the following hygiene precautions be undertaken to minimise the transfer of disease from footwear, equipment and/or vehicles.

Footwear

Footwear must be thoroughly cleaned and disinfected at the commencement of fieldwork and between each sampling site.

This can be achieved by initially scraping boots clear of mud and standing the soles in a disinfecting solution. The remainder of the boot should be rinsed or sprayed with a disinfecting solution that contains *benzalkonium chloride* as the active ingredient. Disinfecting solutions should be prevented from entering any water bodies.

Rubber boots such as 'gum boots' or 'Wellingtons' are recommended because of the ease with which they can be cleaned and disinfected.

Several changes of footwear bagged between sites might be a practical alternative to cleaning.

Equipment

Equipment such as nets, balances, callipers, bags, scalpels, headlamps, torches, wetsuits and waders etc that are used at one site must be cleaned and disinfected before reuse at another site.

Disposable items should be used where possible. Non-disposable equipment should be used only once during a particular field exercise and disinfected later or disinfected at the site between uses using procedures outlined in 2.4 below.

Vehicles

Where necessary, vehicle tyres should be sprayed/flushed with a disinfecting solution in high-risk areas.

Transmission of disease from vehicles is unlikely to be a problem. However, if a vehicle is used to traverse a known frog site, which could result in mud and water being transferred to other bodies of water or frog sites, then wheels and tyres should undergo cleaning and disinfection. This should be carried out at a safe distance from water bodies, so that the disinfecting solution can infiltrate soil rather than runoff into a nearby water body.

Spraying with 'toilet duck' (active ingredient *benzalkonium chloride*) is recommended to disinfect car wheels and tyres.

Cleaning of footwear before getting back into the car will prevent the transfer of pathogens from/to vehicle floor and control pedals.

2.3 Handling of frogs in the field

The spread of pathogenic organisms, such as the frog chytrid fungus, may occur as a result of handling frogs.

Frogs should only be handled when necessary.

Where handling of frogs is necessary the risk of pathogen transfer should be minimised as follows:

- Hands should be either cleaned and disinfected between samples or a new pair of disposable gloves used for each sample¹. This may be achieved by commencing with a work area that has a dish containing a disinfecting solution and paper towels.
- A 'one bag one frog' approach to frog handling should be used especially where several people are working together with one person processing frogs and others doing the collecting. Bags should not be reused.
- A 'one bag one sample' approach to tadpole sampling should be used. Bags should not be reused.

Researchers who use toe clipping or Passive Integrated Transponder (PIT) tagging are likely to increase the risk of transmitting disease between frogs due to the possibility of directly introducing pathogens into the frogs' system. This can be minimised by using:

- Disposable sterile instruments
- Instruments disinfected previously and used once
- Instruments disinfected in between each frog

Disinfecting solutions containing benzalkonium chloride are readily available from local supermarkets. Some brands include Toilet Duck, Sanpic, New Clenz and Pine Clean.

¹ As a principle, this protocol assumes that not all frogs in an infected pond will be contaminated by the frog chytrid fungus. The infective load of a body of water may not be high enough to cause cross contamination of individual frogs in the same pond. Therefore care should be taken to use separate gloves and bags and clean hands for each sample, to avoid transmission of high infective loads between individuals.

Open wounds from toe clipping and PIT tagging should be sealed with a cyanoacrylate compound such as *Vetbond*© to reduce the likelihood of entry of pathogens. The DECC ACEC further recommends the application of topical anaesthetic *Xylocaine*© cream and *Betadine*© disinfectant (1% solution) before and after any surgical procedure. This should then be followed by the wound sealant.

All used disinfecting solutions, gloves and other disposable items should be stored in a sharps or other waste container and disposed or sterilised appropriately at the completion of fieldwork. Disinfecting solutions must not come into contact with frogs or be permitted to contaminate any water bodies

2.4 Disinfection Methods

Disinfecting agents for hands and equipment must be effective against bacteria and both the vegetative and spore stages of fungi. The following agents are recommended:

- Chloramine and Chlorhexidine based products such as *Halamid*©, *Halasept*© or *Hexifoam*© are effective against both bacteria and fungi. These products are suitable for use on hands, footwear, instruments and other equipment. The manufacturers instructions should be followed when preparing these solutions.
- Bleach and alcohol (ethanol or methanol), diluted to appropriate concentrations can be effective against bacteria and fungi. However, these substances may be less practical because of their corrosive and hazardous nature.

When using methanol either:

- immerse in 70% methanol for 30 minutes or
- dip in 100% methanol then flame for 10 seconds or boil in water for 10 minutes

Fresh bleach (5% concentration) may be also effective against other frog pathogens such as Rana Virus.

Some equipment not easily disinfected in these ways can be effectively cleaned using medical standard 70% isopropyl alcohol wipes – *Isowipes*©.

captive frog hygiene management

3.1 Housing frogs and tadpoles

Frogs and tadpoles should only be removed from a site when absolutely necessary.

When it is necessary for frogs or tadpoles to be collected and held for a period of time, the following measures should be undertaken:

- Animals obtained at different sites should be kept isolated from each other and from other captive animals.
- Aquaria set up to hold frogs should not share water, equipment or any filtration system. Splashes of water from adjacent enclosures or drops of water on nets may transfer pathogens between enclosures.
- Prior to housing frogs or tadpoles, ensure that tanks, aquaria and any associated equipment are disinfected.
- Tanks and equipment should be cleaned, disinfected and dried immediately after frogs/tadpoles are removed.

Careful maintenance of your enclosures will ensure a safe and hygienic environment for captive frogs and tadpoles.

3.2 Tadpole treatment

In most instances:

be avoided.

When contemplating a release of captive bred tadpoles for conservation purposes a Translocation Proposal should be submitted to the DECC and pathological screening for disease should be undertaken (see also DECC Translocation Policy). Tadpoles can be tested by randomly removing 10 individuals at 6 weeks and again at 2 weeks before anticipated release. Testing could be undertaken by the pathology section at Taronga Zoo, Newcastle University, CSIRO Australian Animal Health Laboratories at Geelong and James Cook University at Townsville. Such an arrangement would need to be negotiated by contacting one of these institutions well before the anticipated release date. (see Appendix 2 for contact details)

DECC have licenced NSW Schools to allow students and/or teachers to remove tadpoles for classroom life cycle studies. They are authorised to remove individuals from only one location, each school also requires endorsement from Department of Education and Training Animal Care and Ethics Committee and comply with this protocol.

Tadpoles collected for these purposes are to be obtained from the local area of the school and are not to be obtained from DECC Reserves. As soon as tadpoles have transformed, froglets must be returned to the exact point of capture. Tadpoles from different locations are not to be mixed.

Antifungal cleansing treatments to clear tadpoles of the frog chytrid fungus are currently being trialed. In the future, such a treatment may be an added procedure required prior to froglet releases.

Detailed information on safely maintaining frogs in captivity is provided in Voigt (2001).

3.3 Frog treatment

The rigour with which frogs must be treated to ensure pathogens are not introduced to native populations means that any proposal for the removal of adult frogs (particularly threatened species) from wild populations should be given careful consideration.

When it is essential for frogs to be removed from the wild, the following should apply.

Individuals to be released should be quarantined for a period of 2 months and monitored for any signs of illness or disease.

Frogs must not be released if any evidence of illness or infection is detected. If illness is suspected, further advice must be sought from a designated frog recipient (Appendix 2) as soon as possible to determine the nature of the problem. Chytridiomycosis can be diagnosed in live frogs by microscopical examination of preserved toe clips or from shedding skin samples. Research is still in progress on the development of a simple technique for the detection of Chytridiomycosis and a treatment for infected frogs.

Current methods which may be used include:

- A technique for the treatment of potentially infected frogs is to place the frogs individually in a 1mg/L benzalkonium chloride solution for 1 hour on days 1, 3, 5, 9, 11 and 13 of the treatment period. Frogs are then isolated/quarantined for two months. This and other possible treatments are documented in Berger and Speare (1998)
- Betadine© and Bactone© treatments have also been used on adult frogs with some success (M. Mahony, Newcastle University pers. comm.)

which has been used successfully (Lee Berger CSIRO Australian Animal Health Laboratory pers. comm.). Information on this method is available on the Website http://www.jcu.edu. au/school/PHTM/frogs/adms/attach6. pdf.

Frogs undergoing treatment should be housed individually and kept separate from non-infected individuals.

3.4 Displaced frogs

Displaced frogs are those native frog species and introduced Cane Toads (Bufo marinus) which have been unintentionally transported around the country with fresh produce, transported produce and landscaping supplies. Procedures to be undertaken when encountering introduced/displaced native frog species (as well as Cane Toads) are as follows.

3.4.1 Banana box frogs

'Banana Box' frog is the term used to describe several native frog species (usually Litoria gracilenta, L. infrafrenata, L. bicolor and L. caerulea) commonly transported in fruit and vegetable shipments and landscaping supplies. In the past, well meaning individuals have attempted to return these frogs to their place of origin but this is usually impossible to do accurately. There is risk of spread of disease if these frogs are transferred from place to place.

It is strongly recommended that:

Displaced Banana Box frogs should be treated as if they are infected and should not to be freighted anywhere for release to the wild unless specifically approved by DECC.

• Itraconazole[®] is an expensive drug

When encountering a displaced frog:

- Contact a licensed wildlife carer organisation to collect the animal. The frog should then undergo a quarantine period of 2 months along with an approved disinfection treatment.
- Post-quarantine, the frog (if one of the species identified above) may be transferred to a licensed frog keeper. All other species require the permission from DECC Wildlife Licensing and Management Unit (WLMU) prior to transfer. Licensed carer groups are to record and receipt frogs obtained and disposed of in this way.
- Licensed Frog Keepers are to list these frogs in their annual licence returns to DECC.

Frogs held by licensed frog keepers are not to be released to the wild except with specific DECC approval.

Displaced frogs may be made available to recognised institutions for research projects, display purposes or perhaps offered to the Australian Museum as scientific specimens once approval has been provided by the DECC WLMU.

Frogs are often unintentionally transported with fresh produce and landscaping supplies. They are collectively known as 'banana box' or displaced frogs.

3.4.2 Cane toads

Cane toads are known carriers of the Frog chytrid fungus and should not be knowingly transported or released to the wild.

If a cane toad is discovered outside of its normal range, it should be humanely euthanased in accordance with the recommended NSW Animal Welfare Advisory Council procedure (see Appendix 3). Care should be taken to avoid euthanasia of native species due to mistaken identity.

3.4.3 Local frog species

Frogs encountered on roads, around dwellings and gardens or in swimming pools should not be considered as displaced frogs.

Frogs encountered in these situations should be assisted off roads, away from dwellings, or out of swimming pools preferably to the nearest area of vegetation or suitable habitat.

Incidences of frogs spawning or tadpoles appearing in swimming pools should be referred to a wildlife carer/rescue organisation for assistance (see Appendix 4).

Contact the Frogwatch Helpline if you are unsure whether a frog is a local species or displaced.

An NPWS

information brochure titled 'Cane Toads in NSW' provides further information on cane toads and assistance with identification of some of the commonly misidentified native species. This information is also available on the DECC website.) sick or dead frogs

Unless an obvious cause of illness or death is evident (eg predation or road mortality): Sick or dead frogs encountered in the wild should be collected and disposed of in accordance with the procedures described in section 4.2 below.

4.1 Symptoms of sick and dying frogs

Sick and dying frogs exhibit a range of symptoms characteristic of chytrid infection. Symptoms may be expressed in the external appearance or behaviour of the animal. A summary of these symptoms are described below. More detailed information can be found in Berger et al., (1999) or at the James Cook University Amphibian Disease website at: http://www/jcu.edu.au/school/phtm/ PHTM/frogs/ampdis.htm.

Appearance (one or more symptoms)

- darker or blotchy upper (dorsal) surface
- reddish/pink-tinged lower (ventral) surface and/or legs and/or webbing or toes
- swollen hind limbs
- very thin or emaciated
- skin lesions (sores, lumps)
- infected eyes
- obvious asymmetric appearance

Behaviour (one or more symptoms)

- lethargic limb movements, especially hind limbs
- abnormal behaviour (eg a nocturnal, burrowing or arboreal frog sitting in the open during the day and making no vigorous attempt to escape when approached)
- little or no movement when touched

Great barred frog (*Mixophyes fasciolatus*) with severe Chytrid infection — note lethargic attitude and sloughing skin. Photo: L. Berger

Diagnostic behaviour tests

Sick frogs will fail one or more of the following tests:

test	healthy	sick
Gently touch with finger	Frog will blink	Frog will not blink above the eye
Turn frog on its back	Frog will flip back over	Frog will remain on its back
Hold frog gently by its mouth	Frog will use its forelimbs to try to remove grip	No response from frog

4.2 What to do with sick or dead frogs

A procedure for the preparation and transport of a sick or dead frog is given below². Adherence to this procedure will ensure the animal is maintained in a suitable condition for pathological examination and assist the DECC and researchers to determine the extent of the disease and the number of species affected.

- Disposable gloves should be worn when handling sick or dead frogs. Avoid handling food and touching your mouth or eyes as this could transfer pathogens and toxic skin secretions from some frog species.
- New gloves and a clean plastic bag should be used for each frog specimen to prevent cross-contamination.
 When gloves are unavailable, use an implement to transfer the frog to a container rather than using bare hands.
- If the frog is dead, keep the specimen cool and preserve as soon as possible (as frogs decompose quickly after death making examination difficult).
 Specimens can be fixed/preserved in 70% ethanol or 10% buffered formalin.

Cut open the belly and place the frog in about 10 times its own volume of preservative. Alternatively, specimens can be frozen (although this makes tissues unsuitable for some tests). If numerous frogs are collected, some should be preserved and some should be frozen. Portions of a dead frog can be sent for analysis eg a preserved foot, leg or a portion of abdominal skin.

- The container should be labelled showing at least the species, date and location. A standardised collection form is provided in Appendix 5.
- If the frog is alive but unlikely to survive transportation (death appears imminent), euthanase the frog (see Appendix 3) and place the specimen in a freezer. Once frozen, the specimen is ready for shipment to the address provided below.
- If the frog is alive and likely to survive transportation, place the frog into either a moistened cloth bag with some damp leaf litter or into a plastic bag with damp leaf litter and partially inflated before sealing. Remember to keep all frogs separated during transportation.
- Preserved samples can be sent in jars or wrapped in wet cloth, sealed in bags and placed inside a padded box.
- Send frozen samples in an esky with dry ice (available from BOC/CIG Gas outlets).
- Place live or frozen specimens into a small styrafoam esky (available from K-Mart/Big W for approximately \$2.50).
- Seal esky with packaging tape and address to one of the laboratories listed in Appendix 4.
- Send the package by courier.

Further information on sick and dying frogs is available on the Amphibian Disease Home Page at <u>http://www.jcu.</u> edu.au/dept/PHTM/ frogs/ampidis.htm — in particular refer to 'What to do with dead or ill frogs'.

 $^{^{2}}$ The measures described below are standard procedures and may vary slightly depending on the distance and time required to reach the intended recipient. Contact the intended recipient of the sick or dead frog prior to sending to confirm the appropriate procedure.

5 references

Alford, R.A. and Richards, S.J. (1997) Lack of evidence for epidemic disease as an agent in the catastrophic decline of Australian rainforest frogs. *Conserv. Biol.* 11: 1026-1029.

Berger, L., Speare, R. (1998) Chytridiomycosis - a new disease of amphibians. ANZCCART News 11(4): 1-3.

Berger, L., Speare, R., Daszac, P., Green, D.E., Cunningham, A.A., Goggin, C.L., Slocombe, R., Ragan, M.A., Hyatt, A.D., McDonald, K.R., Hines, H.B., Lips, K.R., Marantelli, G. and Parkes, H. (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. *Proc. Nat. Acad. Sci.* 95: 9031-9036.

Berger, L., Speare, R. and Hyatt, A. (1999) Chytrid fungi and amphibian declines: Overview, implications and future directions. In: Campbell, A. (Editor) Declines and disappearances of Australian frogs. Biodiversity Group, Environment Australia.

Environment ACT (1999) Guidelines for minimising introduction and spread of frog pathogens. Environment ACT. Canberra.

Ferrero, T.J. and Bergin, S. (1993) Review of environmental factors influencing the declines of Australian frogs. In: Lunney, D. and Ayers, D. (Editors) Herpetology in Australia: a diverse discipline. Trans. R. Zool. Soc. Mosman.

Laurance, W.F., McDonald, K.R. and Speare, R. (1996) Epidemic disease and catastrophic decline of Australian rainforest frogs. Conserv. Biol. 77: 203-212.

Mahony, M. and Werkman, H. (2000) The distribution and prevalence of Chytrid fungus in frog populations in eastern New South Wales and developing a means to identify presence or absence of Chytrid fungus in the field. Unpublished report to NSW National Parks and Wildlife Service. National Parks and Wildlife Service (2000) Helping frogs survive- A guide for frog enthusiasts. (Prepared by Voight, L., Haering, R., and Wellington, R). NPWS

Pechmann, J.H.K. and Wilbur, H.M. (1994) Putting declining amphibian populations into perspective: natural fluctuations and human impacts. *Herpetologica* 50: 64-84.

Hurstville, NSW.

Pechmann, J.H.K., Scott, D.E., Semlitsch, R.D., Caldwell, J.P., Vitt, L.J. and Gibson, J.W. (1991) Declining amphibian populations: the problem of separating human impacts from natural fluctuations. *Science 253*: 892-895.

Pounds, J.A. and Crump, M.L. (1994) Amphibian declines and climate disturbance: the case for the golden toad and harlequin frog. *Conserv. Biol.* 8: 72-85.

Pounds, J.A., Fogden, M.P.L., Savage, J.M. and Gorman, G.C. (1997) Test of null models for amphibian declines on a tropical mountain. *Conserv. Biol.* 11: 1307-1322.

Powell, M.J. (1993) Looking at mycology with a Janus face: A glimpse of chytridiomycetes active in the environment. *Mycologia* 85: 1-20.

Richards, S.J., McDonald, K.R. and Alford, R.A. (1993) Declines in populations of Australia's endemic tropical rainforest frogs. *Pacific Conserv. Biol.* 1: 66-77.

Speare, R., Berger, L. and Hines, H. (1999) How to reduce the risk of you transmitting an infectious agent between frogs and between sites. Amphibian Diseases Home Page 22/1/99, (http://www.jcu.edu. au/dept/PHTM/frogs/ampdis.htm.).

Voight, L. (2001) Frogfacts No. 8. Frog hygiene for captive frogs (draft publication). FATS. Group. Sydney.

appendix I

hygiene protocol checklist and field kit

The following checklist and field kit are designed to assist with minimising the risk of transferring pathogens between frogs.

Have you considered the following questions before handling frogs in the field:

- Has your proposed field trip been sufficiently well planned to consider hygiene issues?
- Have you taken into account boundaries between sites (particularly where endangered species or populations at risk are known to occur)?
- Have footwear disinfection procedures been considered and a strategy adopted?
- Have you planned the equipment you will be using and developed a disinfection strategy?
- Are you are planning to visit sites where vehicle disinfection will be needed (consider both vehicle wheels/tyres and control pedals) and if so, do you have a plan to deal with vehicle disinfection?
- Have handling procedures been planned to minimise the risk of frog to frog pathogen transmission?
- Do you have a planned disinfection procedure to deal with equipment, apparel and direct contact with frogs?

If you answered NO to any of these questions please re-read the relevant section of the DECC Hygiene Protocol for the Control of Disease in Frogs and apply a suitable strategy.

Field hygiene kit

When planning to survey frogs in the field a portable field hygiene kit should be assembled to assist with implementing this protocol. Recommended contents of a field hygiene kit would include:

12

- Small styrofoam eski
- Disposable gloves
- Disinfectant spray bottle (atomiser spray) and/or wash bottle
- Disinfecting solutions
- Wash bottle
- Scraper or scrubbing brush
- Small bucket
- Plastic bags large and small
- Container for waste disposal
- Materials for dealing with sick and dead frogs (see section 4.2)

appendix 2

Always contact the relevant specialist prior to sending a sick or dead frog. In some cases, only wild frogs will be assessed for disease. Analysis may also attract a small fee per sample.

designated sick and dead frog recipients

Contact one of the following specialists to arrange receipt and analyse sick and dead frogs. Make contact prior to dispatching package:

Karrie Rose Australian Registry if Wildlife Health Taronga Conservation Society, Australia PO Box 20 MOSMAN NSW 2088

Phone: 02 9978 4749 Fax: 02 9978 4516 Krose@zoo.nsw.gov.au

Diana Mendez or Rick Speare School of Public Health, Tropical Medicine and Rehabilitation Sciences James Cook University Douglas Campus TOWNSVILLE QLD 4811

Phone: 07 4796 1735 Fax: 07 4796 1767 Diana.Mendez@jcu.edu.au Richard.Speare@jcu.edu.au

Michael Mahony School of Biological Sciences University of Newcastle CALLAGHAN NSW 2308

Phone: 02 4921 6014 Fax: 02 4921 6923 bimjm@cc.newcastle.edu.au For information on frog keeping licences and approvals to move some species of displaced frog contact:

Co-ordinator, Wildlife Licensing Wildlife Licensing and Management Unit DECC PO Box 1967 Hurstville NSW 1481 Ph 02 9585 6481 Fax 02 9585 6401 wildlife.licensing@environment.nsw.gov.au

For information on the possible identity of displaced frogs contact:

Frog and Tadpole Society (FATS) Frogwatch Helpline Ph: 0419 249 728

appendix 3

NSW Animal Welfare Advisory Council methodology

The NSW Animal Welfare Advisory Council procedure for humanely euthanasing cane toads or terminally ill frogs is stated as follows:

- Using gloves, or some other implement, place cane toad or terminally ill frog into a plastic bag.
- Cool in the refrigerator to 4°C.
- Crush cranium with a swift blow using a blunt instrument.

Note: Before killing any frog presumed to be a cane toad, ensure that it has been correctly identified and if outside the normal range for cane toads in NSW (north coast) that local DECC regional office is informed.

appendix 4

licensed wildlife carer and rescue organisations

Following is a list of wildlife rehabilitation groups licensed by Department of Environment and Climate Change (NSW):

Northern NSW

Australian Seabird Rescue For Australian Wildlife Needing Aid (FAWNA) Friends of the Koala Friends of Waterways (Gunnedah) Great Lakes Wildlife Rescue Koala Preservation Society of NSW Northern Rivers Wildlife Carers Northern Tablelands Wildlife Carers Tweed Valley Wildlife Carers Seaworld Australia WIRES branches in Northern NSW

Southern NSW

Looking After Our Kosciuszko Orphans (LAOKO) Native Animal Network Association Native Animal Rescue Group Wildcare Queanbeyan WIRES branches in Southern NSW

Sydney, Hunter and Illawarra

Hunter Koala Preservation Society

Ku-ring-gai Bat Colony Committee Kangaroo Protection Co-operative Native Animal Trust Fund Organisation for the Rescue and Research of Cetaceans (ORRCA) Sydney Metropolitan Wildlife Services Wildlife Aid Wildlife Animal Rescue and Care (Wildlife ARC) Waterfall Springs Wildlife Park Oceanworld Wildlife Care Centre, John Moroney Correctional Centre Koalas in Care WIRES branches around Sydney, Hunter and Illawarra

Western NSW

Rescue and Rehabilitation of Australian Native Animals (RRANA) RSPCA Australian Capital Territory Inc. Wildlife Carers Network (Central West) WIRES branches in Western NSW Cudgegong Wildlife Carers

appendix 5 — sick or dead frog collection form

Sender details:

name:		address:		postcode:					
phone: (w)	(h)		fax:	email	:				
Collector detail	s: (where differe	nt to sender)							
name:		address:				postcode:			
phone: (w)	(h)		fax:	email	:				
Specimen detail	s:								
record no:	no. of specimens:	species name:		d	ate collec	ted:			
time collected:	sex: ma	status at time of c le/female	ollection: healthy(H)/	c sick(S)/ dead(D)	late sent:	day/month/year day/month/year			
location:		map grid r	eference:	posting)		(northing)			
reason for collectic	on:								
Batch details for	r multiple specie	s collection:							
species	no.	locality	(AMG)	date	sex	status (H/S/D)			
habitat type:	vegetatio	on type:	micro habitat:						
eg creel	k, swamp, forest	eg rainforest, sedgeland	eg	creek bank, under l on gro	og, amongst ound in the o	emergent vegetation, open			
unusual behaviour (of sick frogs								
	e 51 51 61 1 1 0 55.	g lethargic, convulsions, sitting in	the open during the day	, showing little or n	o movement	when touched.			
dead frogs appeara	nce:	eg thin, reddening of skin on	belly and/or toes, red sp	oots, sore, lumps or	discolourati	on on skin			
deformed frogs:		dead/sic	k tadpoles:						
	eg limb(s) missing, abnorm	al shape or length		eg numbers/b	ehaviour				
unusual appearance	e of egg masses:	recent	use of agricultural	chemicals in ar	rea:				
	eg	grey or white eggs			eg pestio	ides, herbicides, fertilisers			

other potential causes of sickness/mortality/comments/additional information:

NSW NATIONAL PARKS AND WILDLIFE SERVICE

General inquiries: PO Box A290 South Sydney 1232 Phone: 9995 5000 or 1300 361967 Fax: 02 9995 5999 Web site: www.environment.nsw.gov.au

© April 2008. Design and illustration by Site Specific Pty Ltd. Printed on recycled paper.

APPENDIX B

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document. At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 124 Pacific Highway St. Leonards, New South Wales 2065 Australia T: +61 2 9478 3900

Appendix C – Kooragang Island Wide GGBF Survey Program, 2021/22 Report – Graphical Summary (University of Newcastle, 2022)

Green and Golden Bell Frog population trends across multiple seasons

1. Population size: A key question for the Island-Wide Survey (IWS) program is; what is the population of green and golden bell frogs (GGBF, Litoria aurea) on Kooragang Island?

The charts below show two different estimates of the population for the wetlands in the Island Wide Survey program. The red line is likely and overestimate, and the blue line is likely an underestimate.

Note that this estimate relates only to the surveyed wetlands, and is thus an underestimate of the population across the whole of Kooragang (+Ash) island.

(For more information on the difference between the lines, see Section 3 – the short version is that the difference relates to breeding events and the 'space' in-between the lines shows the presence of many small juvenile frogs that were spawned some months earlier. More on this in **Section 4**.)

The main take home points from this chart:

- There is a weak relationship between Search Effort (grey columns) and population estimate. In short, the more time we spend looking for frogs, the more we find. More on this in the main report.
- Even so, there seems to be a regular seasonal pattern with a peak in summer (most obvious for the three seasons from 2016-17 to 2018-19).
- The overall population was fairly consistent (between 1,000 and 3,000) from 2016-17 to 2018-19.
- Drought-breaking rain in Feb 2020 saw a mass breeding event (shown by the large peak in the red line) and a consequent increase in the adult population (the smaller but still significant peak in the blue line). Although search effort was high in 2020-21, the population estimate is not just a result of this additional effort.
- Since 2021, the population numbers have decreased back to the levels that were typical from 2016-19.

2. How do we make the population estimate for Kooragang GGBF? This involves a few different types of data and calculations:

i. We survey 60-90 wetlands across the island several times per season (at least twice, usually three times) using standardised Visual Encounter Surveys (VES), counting all frogs seen.

- ii. During VES surveys, we don't see every frog that is actually present, so how to account for the ones we don't see? Intensive surveys at 2 or 3 specific wetlands are used to calculate the actual number of frogs at those wetlands, using an approach called 'Capture-Mark-Recapture' (CMR).
- iii. For those CMR ponds, we use the VES count and calculated subpopulation size to work out a 'detection ratio'. This tells us how many frogs are actually present for each frog seen in a VES. The ratio is typically between 6 and 9 frogs present for each one seen.

2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
8.3	8.3	9.3	8.4	7.3	8.3	7.7	8.8

iv. Applying that detection ratio to the VES counts across the whole island provides an estimate of the population across the surveyed sites.

3. One problem with the model we used for estimating population size is how to account for frogs that were seen but not captured. Because the CMR component of the model explicitly only considers frogs larger than 40 mm SVL (snout-vent length), it can't be applied to counts that include frogs smaller than 40 mm. But if we don't catch the frog, we can't measure it. But we did detect those frogs in VES, so we can't pretend they weren't there.

The two versions of the model described in Section 1 show two ways of dealing with this problem: the blue line is where all animals that were not captured are excluded from the calculations unless they were recorded as being adults. ('-unkown' model). The red line is the model that include animals that were seen but not captured unless they were recorded as definitely being smaller than 40 mm ('+unknown' model).

breeding events.

Two massive breeding events are clearly shown by very large numbers of mets; the first in 2015-16, and the second in 2019-20. Neither of the population models include mets, so they don't cause the difference between them. But the 'missed juveniles' category is included in the +unknown model and omitted from the -unknown one, so the large number of 'missed juveniles' immediately following the breeding events is a major cause of the difference between the two population models.

What were the factors that caused these breeding events? The short answer is climatic variation – see the next sections for an exploration of these.

4. Breeding events: Because the difference between the two models is caused by how we deal with small juveniles that we didn't catch, the places where the lines are very different should be telling us something about times where there are a lot of small juveniles in the system, i.e. immediately following mass

We can confirm this by looking at the demographic breakdown of the frogs detected during VES. The upper chart shows the number of juvenile size classes detected, and the lower one the age-sex classes for larger animals.

Environmental Factors, Breeding Events, & Constructed Habitats

- A. A moderately wet year in 2014-15 was followed by an extremely wet summer breeding season in 2015-16.
- B. This was followed by a series of drier summers, with low rainfall during the breeding season
- C. culminating in a severe drought in 2019.
- D. Drought breaking rain in February-March 2020
- E. was followed by a prolonged *La Nina* and very wet conditions for the last two seasons.

6. Climatic context helps us to understand the GGBF population dynamics over these last 8 seasons, especially the two large breeding events.

The top chart shows wetland hydrology as the percentage of surveyed wetlands of different depths (measured against body regions of a standard frog ecologist, and reflecting the deepest water encountered during a survey - not necessarily the deepest water in the wetland). Tan colours indicate dried out wetlands, light to mid blue is shallow to moderate depths, and darker blues indicate deep water present.

Gambusia infestation rates are shown as the percentage of surveyed wetlands in each round where *Gambusia* is present (dark pink) vs those where *Gambusia* is absent (green).

Rainfall data is shown as monthly (dark blue bars) and quarterly (light blue area) plots. Significant rainfall events are highlighted as numbered vertical dashed blue lines (see **Section 7**).

7. The notable events labelled in Section 6:

- 1. April 2015: a large event that caused widespread flooding in the lower Hunter, but which occurred after the main GGBF breeding season.
- January 2016: includes the greatest single day of rainfall in this dataset (225 mm on 6th Jan, 2016), this mid-summer event resulted in a very large GGBF breeding event. In combination with the April 2015 event, the severe flooding across Kooragang also resulted in widespread dispersal of *Gambusia* across the island.
- March 2017: Following a dry summer where nearly half of all wetlands dried out, ex-tropical cyclone Debbie moved down the east coast and recharged the wetlands across the island. Moderate lateseason GGBF breeding was observed.
- 4. March 2018: Following another dry summer (with ~50% of wetlands dry by end-Feb), rain in early autumn gain resulted in late season breeding. The rain event was large enough to recharge wetlands without connecting them; *Gambusia* were removed from many wetlands as they dried, and remained absent when they refilled.
- March 2019: A third consecutive dry summer resulted in nearly 70% of wetlands drying out by the end of February, and included a grass fire across Kooragang that caused extensive damage. Moderate rainfall in March was not enough to connect wetlands, and levels of *Gambusia* infestation continued to decrease.
- 6. Feb-March 2020: Low winter and spring rainfall was followed by severe drought, resulting in catastrophic bushfires along the East Coast. The survey data shown here does not fully reflect the extent of dry conditions by Jan-Feb 2020 (as there was no survey round in that time); separate observations show that most wetlands were dry by early February. Significant rain in later February to early March caused widespread flooding and resulted in a massive GGBF breeding event; it also connected many wetlands, allowing *Gambusia* to disperse from refugia.
- March 2021: Following 4 years of dry to drought years, La Nina conditions caused a remarkably wet season with very few wetlands drying out over the summer. Heavy flooding rain in March continued to connect wetlands, allowing further spread of *Gambusia* through the system.
- March 2022: A second consecutive La Nina year caused heavy rainfall throughout the season and allowed the continued spread of *Gambusia*. With ~50% of surveyed wetlands containing *Gambusia*, infestation rates are similar to those seen in 2015-16.

8. The two major **breeding events** from 2016 and 2020 were stimulated by the rainfall events listed at #2 and #6 in **Section 7**.

The upper chart shows the VES counts across the 8 seasons for each of the demographic categories, with juvenile classes in green and adult/subadult in brown. The peaks in 2016 and 2020 highlight the breeding events.

9. Constructed habitats: the number and extent of these have increased steadily since 2015, principally with the addition of CHEMP and HCCDC ponds.

The number of CHEMP, 'other constructed wetlands', and 'all wetlands' surveyed each season are shown as shaded areas. The lines show the estimate populations (using the '-unknown' model from Section 1) for the CHEMP wetlands (red), the 'other constructed' wetlands (green), and all wetlands (brown). Data is stacked (e.g. the number of GGBF in the 'other constructed' wetlands at a particular time is the difference between the green and the red lines)

Between them, the constructed wetlands are now home to a significant portion of the GGBF population on Kooragang.

Spatial variation across Kooragang

10. Analysing Kooragang Wetlands by 'Zones'

At the first level of looking at spatial differences in the GGBF population across Kooragang, we group wetlands into three zones: Northern (blue - also known as 'Ash Island'); Central (red), and Southern (gold). The Southern Zone is also known as the 'Industrial' zone and is located on the KIWEF.

11. Wetland water quality across the three zones:

Year	2016	2017	17-18 2				-19			2019	-20			2020	-21		2021-22		
Round	2	0	1	2	3	0	1	2	3	1	2	3	4	1	2	3	1	2	3
Zones	Wate	r tem	р																
Northern	28.6	21.7	25.2	24.6	23.3	14.8	20.3	24.1	25.1	19.1	23.2	26.0		19.1	23.9	24.4	21.3	25.7	21.7
Central	28.5	23.9	25.3	24.7	23.0	20.4	23.2	25.9	26.7	20.5	23.8	26.7	21.3	18.3	25.9	24.0	22.3	24.4	23.6
Southern	27.6	19.5	22.0	26.3	23.8	15.6	20.5	22.9	24.2	17.7	21.7	25.3	21.0	17.5	24.5	24.2	22.6	24.5	22.8
	рН																		
Northern	8.6	6.9	7.3	7.5	7.5	7.1	7.4	6.7	5.9	6.7	6.8	6.5		4.5	7.7	7.0	6.8	6.9	6.8
Central	6.5	6.7	7.6	6.5	7.0	7.2	7.2	7.0	6.9			6.3	6.9	5.8	7.2	7.5	7.3	7.7	7.6
Southern	8.0	8.3	7.7	7.4	8.0	5.5	8.0	8.2	7.6	7.5	7.8	7.4	7.8	7.3	8.7	8.2	8.3	8.4	8.1
	Salini	ty																	
Northern	5.1	7.0	10.5	15.7	5.0	2.5	1.9	4.6	0.9	1.0		2.2		4.6	2.6	1.2	0.4	1.4	0.3
Central	7.2	12.4	6.2	33.5	11.8	10.1	7.1	15.6	3.3	6.8	4.4	7.1	7.2	9.3	11.5	10.1	1.9	5.6	2.3
Southern	5.5	3.0	0.9	1.2	2.7		0.3			1.4	1.5	0.9	1.0	1.0	0.7	0.5	0.4	0.5	0.4

Water temperature shows seasonal variation (note the lower temps in the first round of each season), but little difference between zones. pH is generally more alkaline in the Southern Zone, and lowest in the Northern.

Salinity (shown here in ppt) is important for GGBF because moderately saline water inhibits chytrid fungus. Levels > 10 ppt are less suitable for GGBF. The levels are highest in the Central Zone, and are highest in dry years.

12. GGBF populations by Zone: these charts show VES detections for the three zones, with juvenile demographic classes shaded in green and adults/subadults in brown.

The majority of GGBF detected are in the Southern Zone (KIWEF). Although this is skewed by two very large breeding events, even the numbers of adults in the Southern Zone are consistently higher than in the Central Zone.

Numbers in the Northern Zone are very low, especially for juveniles. Although the reasons for these low levels are not clear, this is an urgent priority for GGBF management on Kooragang.

is potentially a concern.

In the Northern Zone, GGBF numbers increased in School House region between 2017 and 2019, but have since declined. This might be linked to the release of captive bred juveniles in 2016-17, and perhaps suggests a potential management strategy.

Year 2014-15 2015-16 2016-17 2019-20 017-18 1 1.9 Rou Norther entral Mets Norther Central 0 0 Xsmall Juys Northern 0 0 0 0 0 1 0 0 Central 11 23 6 10 Small juvs Northern 0 0 0 0 0 0 0 0 Centra 3 1 14 27 37 0 10 46 22

Consistent with the VES data, breeding indicators have been consistently low in the Northern Zone, better in the Central Zone, and high in the Southern Zone. A key question for research is identifying the factors that contribute to successful breeding – more on these in the main report.

14. Breeding by Zone: indicators of breeding include calling, the presence of tadpoles and metamorphlings ('mets'), and the presence of very small ('Xsmall; <35mm SVL) and small (<40mm SVL) juvenile frogs. Data for Calling and Tadpoles is presence/absence for individual wetlands, whilst data for Mets, Xsmall, and Small are counts of individual animals.

• GGBF are almost completely absent from the northern part ('Hunter River North) of the Northern Zone.

• In the Central Zone, Cobban's Creek (the location of most of the BHP CHEMP) often has many more GGBF than Bellfrog Way

• The northern and southern parts of the Southern Zone now have approximately equal numbers of GGBF.

The strategy to increase the GGBF population in the southern part of the Southern Zone (KIWEF) seems to have been successful. Likewise, the BHP CHEMP has been successful, but the population along Bellfrog Way

		2020-2	21		2021-2	22								
4	4.1	1	2	3	0.1	0.2	1	1.1	1.2	2	2.1	3	3.1	3.2
0	0	1	5	0	0	o	2	0	0	0	0	0	0	0
2	0	1	6	1	2	0	11	0	2	8	0	0	0	0
0	0	8	5	5	10	5	14	2	1	6	2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0	2	0	0
0	12	0	о	1	0	0	0	0	2	4	4	3	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
37	0	0	0	3	0	0	1	0	3	8	8	14	0	0
078	0	0	7	1	0	1	5	1	3	7	0	113	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	38	2	1	1	2	1	0	1	15	0	8	0	0
935	3878	250	91	8	0	0	1	1	0	13	1	30	4	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	38	9	28	1	0	3	0	4	38	3	3	0	0
7	0	72	89	35	0	0	0	0	0	15	1	12	2	3

The 2021-22 season

15. Gambusia: these invasive pest fish have an important impact on GGBF as they predate eggs and tadpoles. The infestation status of wetlands at the end of the 2021-22 season is shown as

- Green = Gambusia absent
- Light pink = *Gambusia* appeared in the wetland during the season •
- Dark pink = Gambusia was present through the season

Gambusia infestation rates are currently at their highest levels since the very wet summer of 2015-16 (see Section 5 for the temporal variation in infestation rates on Kooragang). The maps below show the distribution in the Southern Zone at the end of that summer, compared with the situation after two seasons with relatively dry summers.

The lowest levels of infestation were in 2019-20, but two years of La Nina have provided wet conditions that allow Gambusia to re-disperse across many of the lower-lying wetlands. The majority of wetlands that are currently Gambusia-free are constructed.

The increased rates of Gambusia infestation since 2020 are likely to be having a negative effect on GGBF breeding in the last two seasons.

16. Breeding (by Region): Using the same breeding indicators outlined in Section 14, and the regional breakdown shown in Section 13:

Round	0.1	0.2	1	1.1	1.2	2	2.1	3	3.1	3.2
Ave, date of round	8-10-2021	2-11-2021	-12-2021	8-12-2021	6-01-2022	-02-2022	-03-2022	1-03-2022	8-04-2022	9-05-2022
	Calling	-	N	N	-	N	11	(1)	7	7
Hunter North River	0	0	0	0	0	0	0	0	0	0
School House	0	0	2	0	0	0	0	0	0	0
Cobbans Creek	1	0	4	0	2	5	0	0	0	0
Bellfrog Way	1	о	7	0	0	3	0	0	0	0
Industrial Zone North	0	0	5	0	0	3	0	0	0	0
Industrial Zone South	10	5	9	2	1	3	2	0	0	0
	Tadpol	es								
Hunter North River	0	0	0	0	0	0	0	0	0	0
School House	0	0	0	0	0	0	0	0	0	0
Cobbans Creek	0	0	0	0	0	1	0	2	0	0
Bellfrog Way	0	0	0	0	0	1	0	0	0	0
Industrial Zone North	0	0	0	0	0	3	0	1	0	0
Industrial Zone South	0	0	0	0	2	1	4	2	0	0
	Mets									
Hunter North River	0	0	0	0	0	0	0	0	0	0
School House	0	0	0	0	0	0	0	0	0	0
Cobbans Creek	0	0	1	0	3	7	0	0	0	0
Bellfrog Way	0	0	0	0	0	1	8	14	0	0
Industrial Zone North	0	0	0	0	0	6	0	12	0	0
Industrial Zone South	0	1	5	1	3	1	0	101	0	0
	Xsmall	Juvs								
Hunter North River	0	0	0	0	0	0	0	0	0	0
School House	0	0	0	0	0	0	0	0	0	0
Cobbans Creek	1	1	0	0	1	6	0	1	0	0
Bellfrog Way	0	1	1	0	0	9	0	7	0	0
Industrial Zone North	0	0	0	0	0	10	0	10	0	0
Industrial Zone South	0	0	1	1	0	3	1	20	4	1
	Small j	uvs								
Hunter North River	0	0	0	0	0	0	0	0	0	0
School House	0	0	0	0	0	0	0	0	0	0
Cobbans Creek	0	0	3	0	4	31	3	1	0	0
Bellfrog Way	1	0	0	0	0	7	0	2	0	0
Industrial Zone North	0	0	0	0	0	7	0	7	0	0
Industrial Zone South	0	0	0	0	0	8	1	5	2	3
	Rainta	11			_					
Imm in prev. month	85	138	214	37	43	144	285	354	153	110

- Calling was most prevalent early in the season and continued to early March.
- Rainfall was consistent in Spring and early Summer, low during mid-Summer, and then very heavy in February and March.
- Data for Mets and Juveniles suggests that breeding occurred at low levels through the early part of the season, with a small breeding 'event' late in the season following the late summer rainfall.

no. indiv	30 20 10 0	18	20	22	24	26
no. individuals	100 90 80 70 60 50 40 30 20 10 0	18	3 20) 22	2 24	2
ndividuals	40 30 20					

100% 909 80% 70% 60% 50% 40% 30% 20% 10% 0%

We would like to know the infection rates in different parts of the island, or in constructed vs 'natural' wetlands, but this requires a higher sampling intensity.

17. Demography: frequency distribution plots are useful for identifying cohorts of young animals. They also show how many larger (=older) females are present – these females are very important for successful breeding.

• Low number of juveniles early in the season indicate a lack of significant breeding late in the previous season.

• A cohort of medium-sized juveniles in Round 2 indicate a moderate breeding event early in the 2021-22 season (gold arrow)

• Whilst there are good numbers of adult females present, they are generally small in size (pink arrow). These animals were likely recruited in Feb-March 2020, and have not yet reached optimal size for breeding. If they have survived the 2022 winter then they can be important for potential breeding in the coming season.

18. Chytrid: For various reasons (including, most recently, availability of swabs during COViD), chytrid infection rates are difficult to monitor. Samples from the 2020-21 and 2021-22 seasons demonstrate the baseline pattern of seasonal variation, with higher rates during Winter and Spring.

Appendix D – KIWEF Datalogger Download Monitoring – October 2021 (Robert Carr & Associates, January 2022) RCA ref 11766E-411/0 Client ref HDC291

19 January 2022

Hunter and Central Coast Development Corporation Level 5, 26 Honeysuckle Drive NEWCASTLE NSW 2300

AttentionGrant MoylanCCMike Bardsley

Geotechnical Engineering Engineering Geology Environmental Engineering Hydrogeology Construction Materials Testing Environmental Monitoring Noise & Vibration Occupational Hygiene

KIWEF DATALOGGER DOWNLOAD MONITORING FACTUAL REPORT – OCTOBER 2021

RCA Australia (RCA) has been engaged by Hunter and Central Coast Development Corporation (HCCDC) to undertake Datalogger Monitoring at Kooragang Island Waste Emplacement Facility (KIWEF), Newcastle NSW.

Dataloggers were collected and downloaded by RCA personnel on 25 October 2021 from locations shown on **Drawing 1**, **Attachment A**. It is noted that this was earlier than the scheduled November 2021 due to pending personnel changes within RCA and was approved by HCCDC prior to scheduling works.

A total of eleven (11) loggers, and the barometric logger, were downloaded. Field readings were collected from SWDP4 however there was no logger to download.

A summary of relevant information, including well and water physical characteristics, data logger condition and programming, and any other relevant observations were recorded by RCA during the monitoring round and are summarised in **Attachment B**.

Graphical charts of the barometric corrected water level (mAHD), electrical conductivity (EC) data, rainfall (BOM data for Nobbys Head) and EC chytrid protection threshold levels (as advised by HCCDC) were produced by RCA and are presented in **Attachment C**.

RCA notes that survey data for well locations K114 and B-02L as well as for Deep Pond B were not supplied. For data presentation purposes RCA have assigned a nominated RL of 3.0m AHD for each of these locations.

A summary of EC chytrid protection threshold levels (as advised by HCCDC) are detailed in **Table 1**.

No Chytrid Protection	Chytrid Protection Threshold ¹	GGBF Tadpole Health Threshold ²	GGBF Adult Health Threshold ³
0-1,650 μS/cm	1,650 μS/cm	2,900 μS/cm	4,100 μS/cm
1. EC levels below Fungus.	the Threshold present ar	n increased risk of mortalit	y resulting from Chytrid
2. EC levels above	e the Threshold indicate c	onditions unsuitable for G	GBF tadpole survival.
3. EC levels above	e the Threshold indicate c	onditions unsuitable for G	GBF adult habitat.

Table 1Salinity Thresholds (as advised by HCCDC)

A copy of all electronic data files including Solinst XLE program files, Microsoft Excel CSV data files, barometric corrected data files, and Microsoft Excel Worksheets showing calculations and graphs have been supplied to HCCDC electronically.

Yours faithfully RCA AUSTRALIA

Throoker

Fiona Brooker Manager of Environmental Services (BEng(Env))

Attachments

Drawing Summary Data Table Water Level Charts

ral Coa	ast Developme	ent Corporation	RCA Ref		1176	6e-41	1/0
В	SCALE	1 : 8000 (A3)	DRAWING	No	1	REV	0
В	DATE	19/01/2022	OFFICE	NEW	CAS	TLE	

RCA summary of data logger information for KIWEF - October 2021

											Top of Pine		Measur	ement from dat	a logger					
Logger Name/ Location	Logger Serial Number	Model	GPS (UTS/UPM)	Date of Retrieval	Date of Deployment	Battery	Condition	*Surveyed T.O.P (mAHD)	Top of Pipe to Water Level (m)	Water to Sediment (m)	to Data Logger Tip (m)	Water level above logger	* Water level above logger	Date of last reading	Logger Offest (m)	Logger set to take new readings from	Logger Interval (mins)	Estimated Memory Capacity	Data Presented and Graphed	Notes
SWDP-103	1072536	Solinst Levelogger 3001 LT F30/M10	0381402, 6361958	25/10/2021	25/10/2021	100%	Good	2.901	1.10	0.62	1.90	0.80	0.574	Unknown	-9.55m	25/10/2021	20	7.4 months	Yes	
Easement Pond South	131068163	Solinst Levelogger 3001 LTC F30/M10	0381614, 6361855	25/10/2021	25/10/2021	97%	Good	2.957	1.10	0.65	1.62	0.52	0.472	6/03/2021	None	25/10/2021	20	7.4 months	Yes	
SWDP4	1072543	Solinst Levelogger 3001 LTC F30/M10	0381778, 6362349	25/10/2021	25/10/2021	100%	Good	2.463	0.97	0.80	1.63	0.66	0.347	Unknown	None	25/10/2021	20	7.4 months	No	No logger within well (none available to replace faulty logger in June 2021)
SWSMEC-K2	121071565	Solinst Levelogger 3001 LTC F30/M10	0380330, 6362216	25/10/2021	25/10/2021	100%	Good	2.032	0.96	0.55	1.35	0.39	0.359	Unknown	None	25/10/2021	20	7.4 months	Yes	
B-02L	121071574	Solinst Levelogger 3001 LTC F30/M10	0382825, 6361856	25/10/2021	25/10/2021	98%	Good		1.1	0.68	1.62	0.52	0.746	25/10/2021	None	25/10/2021	20	7.4 months	Yes	
Deep Pond B	1076043	Solinst Levelogger 3001 LTC F30/M10	0380871, 6362461	25/10/2021	25/10/2021	98%	Good		0.91	0.42	1.34	0.43		3/06/2021	None	25/10/2021	20	7.4 months	Yes	
K114	1068452	Solinst Levelogger 3001 LTC F30/M10	0382129, 6362224	25/10/2021	25/10/2021	99%	Good		1.11	0.48	1.56	0.45		Unknown	None	25/10/2021	20	7.4 months	Yes	
Deep Pond A	1071594	Solinst Levelogger 3001 LTC F30/M10	0381238, 6362908	25/10/2021	25/10/2021	100%	Good	1.799	0.36	0.58	0.89	0.53	0.005	3/06/2021	None	25/10/2021	20	7.4 months	Yes	
SW K7	1076842	Solinst Levelogger 3001 LTC F30/M10	0381670, 6362757	25/10/2021	25/10/2021	100%	Good	2.901	0.65	0.80	1.26	0.61	0.679	4/06/2021	None	25/10/2021	20	7.4 months	Yes	
SW Pond 11	121071570	Solinst Levelogger 3001 LTC F30/M10	0381482, 6363035	25/10/2021	25/10/2021	98%	Good	2.106	0.63	0.88	1.30	0.67	0.363	6/03/2021	None	25/10/2021	20	7.4 months	Yes	
Railway Pond	1071610	Solinst Levelogger 3001 LTC F30/M10	0381625, 6363051	25/10/2021	25/10/2021	98%	Good	2.053	0.60	0.57	0.97	0.37	-0.004	3/06/2021	None	25/10/2021	20	7.4 months	Yes	
SW K7B	121071572	Solinst Levelogger 3001 LTC F30/M10	0381772, 6362754	25/10/2021	25/10/2021	99%	Good	2.318	0.27	0.84	0.90	0.63	0.545	3/06/2021	None	25/10/2021	20	7.4 months	Yes	

Bold values are considerd to indicate a potential error with field measurements

* Surveyed AHD proved by Daly Smith

Site Barologger (SWDP-103)	12059754	Solinst Barolgger 3001 LT/M15	0381402 <i>,</i> 6361958	25/10/2021	25/10/2021	100%	Good		25,	25/10/2021	20	7.4 months		
-------------------------------	----------	----------------------------------	-----------------------------	------------	------------	------	------	--	-----	------------	----	------------	--	--

It is noted that the drop in the reason for the water level drop in mid October 2021 is considered to indicate a potential error or related to some movement of the logger which RCA is not aware of/

Appendix E – KIWEF Datalogger Download Monitoring – June 2022 (Robert Carr & Associates, August 2022) RCA ref 11766f-401/0 Client ref HDC291

23 August 2022

Hunter and Central Coast Development Corporation Level 5, 26 Honeysuckle Drive NEWCASTLE NSW 2300

Attention:Grant MoylanCC:Mike Bardsley

Geotechnical Engineering Engineering Geology Environmental Engineering Hydrogeology Construction Materials Testing Environmental Monitoring Noise & Vibration Occupational Hygiene

KIWEF DATALOGGER DOWNLOAD MONITORING FACTUAL REPORT – ROUND 12 (JUNE 2022)

RCA Australia (RCA) has been engaged by Hunter and Central Coast Development Corporation (HCCDC) to undertake Datalogger Monitoring at Kooragang Island Waste Emplacement Facility (KIWEF), Newcastle NSW.

Dataloggers were collected and downloaded by RCA personnel on 9 and 16 June 2022 from locations shown on **Drawing 1**, **Attachment A**. It is noted that this was later than scheduled due to inclement weather and organising site access however was approved by HCCDC prior to scheduling works. In the quarter prior to sampling, 445mm of rain had been recorded at the Newcastle Nobby's BOM station.

Six (6) loggers and the barometric logger were able to be collected from the field. Due to the recent inclement weather, five (5) locations were not accessible due to the water levels of the ponds. Inaccessible locations were Easement Pond South, Deep Pond A and B, and SW K7 and K7B: the pipe at SW K7B was not found and due to approximately only 0.3m of pipe being above water, it is considered that this may be below the current level of the pond.

A total of three (3) loggers and the barometric logger, were downloaded: the loggers in Railway Pond, SW Pond 11 and K114 were unresponsive and have been sent back to the manufacturers for data retrieval. Spare loggers were installed at Railway Pond and SW Pond 11; however none were left to place at K114.

A summary of relevant information, including well and water physical characteristics, data logger condition and programming, and any other relevant observations were recorded by RCA during the monitoring round are summarised in **Attachment B**.
Graphical charts of the barometric corrected water level (mAHD), electrical conductivity (EC) data, rainfall (BOM data for Nobbys Head) and EC chytrid protection threshold levels (as advised by HCCDC) were produced by RCA and are presented in **Attachment C**.

RCA notes that survey data for well locations K114 and B-02L as well as for Deep Pond B were not supplied. For data presentation purposes RCA have assigned a nominated RL of 3.0m AHD for each of these locations.

A summary of EC chytrid protection threshold levels (as advised by HCCDC) are detailed in **Table 1**.

Table 1	Salinity Thresholds (as advised by HCCDC)
---------	---

No Chytrid Protection	Chytrid Protection Threshold ¹	GGBF Tadpole Health Threshold ²	GGBF Adult Health Threshold ³						
0-1,650 μS/cm	1,650 μS/cm	2,900 μS/cm	4,100 μS/cm						
1. EC levels below	EC levels below the Threshold present an increased risk of mortality resulting from Chytrid								
Fungus.	igus.								
2. EC levels above	EC levels above the Threshold indicate conditions unsuitable for GGBF tadpole survival.								
3. EC levels above	EC levels above the Threshold indicate conditions unsuitable for GGBF adult habitat.								

It is noted that data for K5_N6, extracted in December 2020, has been recovered by manufacturers, and the graph is included in **Attachment C**.

A copy of all electronic data files including Solinst XLE program files, Microsoft Excel CSV data files, barometric corrected data files, and Microsoft Excel Worksheets showing calculations and graphs have been supplied to HCCDC electronically.

Yours faithfully RCA AUSTRALIA

. Jehn Kh

Adeleh Khoshzaban Environmental Engineer

Attachments

Drawing Summary Data Table Water Level Charts

ntral Coa	ast Developme	ent Corporation	RCA Ref		1176	6f-40	1/0
AK	SCALE	1 : 8000 (A3)	DRAWING N	No	1	REV	0
FB	DATE	23/08/2022	OFFICE	NEW	CAS	TLE	

											Ton of Ding		Measur	ement from data	alogger					
Logger Name/ Location	Logger Serial Number	Model	GPS (UTS/UPM)	Date of Retrieval	Date of Deployment	Battery	Condition	*Surveyed T.O.P (mAHD)	Top of Pipe to Water Level (m)	Water to Sediment (m)	to Data Logger Tip (m)	to Data ogger Tip (m) Water level above logger	* Water level above logger	Date of last reading	Logger Offest (m)	Logger set to take new readings from	Logger Interval (mins)	Estimated Memory Capacity	Data Presented and Graphed	Notes
SWDP-103	1072536	Solinst Levelogger 3001 LT F30/M10	0381402, 6361958	9/06/2022	9/6/222	100%	Good	2.901	0.63	1.13	1.05	0.42	0.574	Unknown	-9.55m	9/06/2022	20	7.4 months	Yes	
Easement Pond South	131068163	Solinst Levelogger 3001 LTC F30/M10	0381614 <i>,</i> 6361855		Inaccessible									No						
SWDP4	1072543	Solinst Levelogger 3001 LTC F30/M10	0381778, 6362349				No logge	r - did not access					0.347	Unknown	None	N/A	20	7.4 months	No	No logger within well (none available to replace faulty logger in June 2021)
SWSMEC-K2	121071565	Solinst Levelogger 3001 LTC F30/M10	0380330, 6362216	9/06/2022	9/06/2022	100%	Good	2.032	0.87	0.77	1.32	0.45	0.359	Unknown	None	9/06/2022	20	7.4 months	Yes	
B-02L	121071574	Solinst Levelogger 3001 LTC F30/M10	0382825, 6361856	16/06/2022	16/06/2022	98%	Good		1.00	0.74	1.65	0.65	0.746	25/10/2021	None	16/06/2022	20	7.4 months	Yes	
Deep Pond B	1076043	Solinst Levelogger 3001 LTC F30/M10	0380871, 6362461		Inaccessible								Yes							
K114	1068452	Solinst Levelogger 3001 LTC F30/M10	0382129, 6362224	25/10/2021	25/10/2021	99%	Good		1.10	0.43	1.49	0.39		Unknown	None	N/A	20	7.4 months	Yes	
Deep Pond A	1071594	Solinst Levelogger 3001 LTC F30/M10	0381238, 6362908		Inaccessible										Yes					
SW K7	1076842	Solinst Levelogger 3001 LTC F30/M10	0381670, 6362757		Inaccessible								Yes							
SW Pond 11	121071570	Solinst Levelogger 3001 LTC F30/M10	0381482, 6363035	9/06/2022	9/06/2022	100%	Good	2.106	0.34	1.12	0.95	0.61	0.363	6/03/2021	None	9/06/2022	20	7.4 months	Yes	
Railway Pond	1071610	Solinst Levelogger 3001 LTC F30/M10	0381625, 6363051	9/06/2022	9/06/2022	100%	Good	2.053	0.31	0.88	0.68	0.38	-0.004	3/06/2021	None	9/06/2022	20	7.4 months	Yes	
SW K7B	121071572	Solinst Levelogger 3001 LTC F30/M10	0381772, 6362754		Inaccessible								Yes							
Bold values are co	values are considerd to indicate a potential error with field measurements																			

* Surveyed AHD proved by Daly Smith

Site Barologger (SWDP-103) 12059754	Solinst Barolgger 3001 LT/M15	0381402, 6361958	9/06/2022	9/06/2022	100%	Good		9/0	9/06/2022	20	7.4 months			
--	----------------------------------	------------------	-----------	-----------	------	------	--	-----	-----------	----	------------	--	--	--

December 2020 download – Recovered Data

(K5_6N)

Appendix F – KIWEF Annual Groundwater & Surface Water Monitoring 2022 (Hazmat Services, June 2022)

N4656_GME_RPT01_R0_200622 June 2022

Ground and Surface Water Monitoring, Kooragang Island Waste Emplacement Facility

Annual Monitoring 2022

N4656_GME_RPT01_R0_200622

June 2022

PREPARED FOR

Hunter & Central Coast Development Corporation 6 Stewart Avenue NEWCASTLE WEST NSW 2302

PREPARED BY

Hazmat Services Pty Ltd

A.B.N. 43 127 055 743 PO Box 118 CARRINGTON NSW 2294 T. 02 4961 1887 F. 02 4969 5887 E. admin@hazmat-services.com.au W. www.hazmat-services.com.au

DISCLAIMER

Reports produced by Hazmat Services Pty Ltd are prepared for a particular Client's objective and are based on a specific scope, conditions and limitations as agreed between Hazmat Services Pty Ltd and the Client. Information and/or report(s) prepared by Hazmat Services Pty Ltd may not be suitable for uses other than the original intended objective. No parties other than the Client should use any information and/or report(s) without first conferring with Hazmat Services Pty Ltd.

The information and/or report(s) prepared by Hazmat Services Pty Ltd should not be reproduced, presented or reviewed except in full. This report has been prepared on behalf of and for the exclusive use of Hazmat Services Pty Ltd's Client and is subject to and issued in connection with the provisions of the agreement between Hazmat Services Pty Ltd and its Client. Hazmat Services Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Hazmat Services Pty Ltd operates under a Health, Safety, Environment and Quality Management System which has been certified by QMS Certification Services to comply with the requirements of ISO 45001:2018 Occupational Health & Safety Management Systems, ISO 14001:2015 Environmental Management Systems and ISO 9001:2015 Quality Management Systems. Accreditation No S1410994MA.

DOCUMENT HISTORY AND STATUS

Rev	Status	Description	Author	Reviewer	Date
A	Draft	Issued for Review			08/08/2022
			Florence Archer Associate Environmental Scientist	Damien Hendrickx Senior Environmental Scientist Certified Environmental Practitioner - General (No. 1535)	
0	Final	Approved for Use	Farcher.	Jamien Hendonk	29/09/2022
			Florence Archer Associate Environmental Scientist	Damien Hendrickx Senior Environmental Scientist Certified Environmental Practitioner - General (No.1535)	

DISTRIBUTION OF COPIES

Rev	Format	Issued To
A	Electronic (PDF)	Grant Moylan, Environmental Advisor Hunter & Central Coast Development Corporation, grant.moylan@hccdc.nsw.gov.au
0	Electronic (PDF)	Grant Moylan, Environmental Advisor Hunter & Central Coast Development Corporation, grant.moylan@hccdc.nsw.gov.au

CP/

ABBREVIATIONS

ANZECC	Australian and New Zealand Environment Conservation Council
ANZECC/ ARMCANZ	Australian and New Zealand Environment Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure
ВоМ	Bureau of Meteorology
сос	Chain of Custody
DO	Dissolved Oxygen
DQO	Data Quality Objective
EC	Electric Conductivity
EPA	NSW Environment Protection Authority
EPL	Environment Protection Licence
HCCDC	Hunter and Central Coast Development Corporation
KIWEF	Kooragang Island Waste Emplacement Facility
LOR	Limit of Reporting
ΝΑΤΑ	National Association of Testing Authorities
OEH	NSW Office of Environment and Heritage
PID	Photo-ionisation Detector
QA/QC	Quality Assurance/Quality Control
RCA	RCA Australia
RPD	Relative Percentage Difference
SWL	Standing Water Level
voc	Volatile Organic Compounds

TABLE OF CONTENTS

<u>1</u>	INTRODUCTION	1
1.1 1.2	PROJECT OBJECTIVES SCOPE OF WORKS	1 1
<u>2</u>	SITE INFORMATION	3
21		3
22		3
2.2		् २
2.4	Previous Monitoring	3
<u>3</u>	ASSESSMENT CRITERIA	4
3.1	KIWEF ANNUAL SURFACE AND GROUNDWATER MONITORING CRITERIA	4
3.2	Absence of Specific Criteria	5
<u>4</u>	FIELDWORK METHODOLOGY	6
4.1		6
4.2	Surface Water Sampling	6
4.3	GROUNDWATER SAMPLING	7
4.4	SAMPLE ANALYSIS	8
4.5	Sample Handling and Transport	8
4.6	DECONTAMINATION	8
4.7	QUALITY ASSURANCE/QUALITY CONTROL	8
4.8	METEOROLOGICAL CONDITIONS	10
<u>5</u>	SUMMARY OF RESULTS	11
51		11
5.2	FIELD WATER QUALITY PARAMETERS	11
5.3	GROUNDWATER	11
5.4	SUBFACE WATER	12
5.5	QUALITY OF ANALYTICAL DATA	12
,		
<u>o</u>	DISCUSSION	14
6.1	KIWEF ANNUAL MONITORING	14
6.1.	.1 Fill Bores	14
6.1.	2 Shallow Estuarine Bores	14
6.1.	.3 Deep Estuarine Bores	15
6.1.	.4 SURFACE WATER	15
<u>7</u>		16
7.1	Conclusions	16
7.2	Recommendations	16
<u>8</u>	LIMITATIONS	17
9	REFERENCES	18
-		

TABLES

REPORT SECTION

TABLE 1: ADOPTED MONITORING CRITERIA FOR GROUNDWATER AND SURFACE WATER (µG/L)	. 4
TABLE 2: LIST OF MONITORING WELLS NOT SAMPLED – 2022 MONITORING EVENT	, 6
TABLE 3: DATA QUALITY	12

TABLES SECTION

TABLE A: SAMPLE LOG 2022 TABLE B: RESULTS SUMMARY 2022

FIGURES

FIGURE 1: JUNE 2022 RAINFALL DATA FIGURE 2: JULY 2022 RAINFALL DATA FIGURE 3: FORMER KIWEF STUDY AREA FIGURE 4: KIWEF GROUNDWATER & SURFACE WATER MONITORING LOCATIONS 2022

APPENDICES

APPENDIX A: STUDY AREA AND SAMPLING LOCATIONS APPENDIX B: EPL SURRENDER NOTICE APPENDIX C: QUALITY ASSURANCE/QUALITY CONTROL REPORT APPENDIX D: RESULTS TABLE AND SAMPLE LOG APPENDIX E: LABORATORY REPORT SHEETS AND CHAIN OF CUSTODY APPENDIX F: FIELD SHEETS APPENDIX G: HISTORICAL DATA APPENDIX H: CALIBRATION CERTIFICATES

1 INTRODUCTION

Hazmat Services Pty Ltd ("**Hazmat**") was commissioned by Hunter & Central Coast Development Corporation ("**HCCDC**") to undertake ground and surface water monitoring for an additional year at the former Kooragang Island Waste Emplacement Facility ("**KIWEF**") located off Cormorant Drive, Kooragang Island NSW (the "**Site**"). The Site comprises several lots which are legally identified as Part Lot 7, Lot 10, Lot 11 and Part Lot 14 of DP11194525. The location of the Site is shown on **Figure 3** in **Appendix A**.

The former landfill was operated by BHP under Environmental Protection Licence ("**EPL**") EPL6437 between 1997 and 2003 (Protection of the Environment Operations Act ("**PoEO**") licensing did not exist prior to 1997, and the landfill was regulated under State Pollution Control Commission and other environmental protection regulations). Under the EPL, BHP was required to undertake a range of ground and surface water monitoring. Since the closure of the steelworks and landfill, HCCDC is responsible for the ongoing monitoring of the Site on behalf of the state government, which is now the owner of the Site. The conditions for the ongoing monitoring are set out in the Approval of the Surrender of a Licence Notice (No 1111840; the "Notice") issued by the NSW Environment Protection Authority ("**EPA**"). The monitoring described in this report satisfies the routine regulatory requirements under Section 5 Environmental Monitoring Part c) Groundwater and Surface Water Monitoring Program, within the Notice.

1.1 Project Objectives

The objective of the surface and groundwater monitoring was to satisfy the conditions of the Notice by assessing the water quality and reporting the results to HCCDC in form of an annual report.

1.2 Scope of Works

The monitoring includes 50 established groundwater wells and five (5) surface water monitoring locations as prescribed by HCCDC in the tender documents (Env1899, KIWEF Water Monitoring (2018-2020) Variation 3 – 2022 Extension); the "**Brief**"). The groundwater wells and surface water locations are shown on the sample location map as **Figure 2** in **Appendix A**.

Groundwater and surface water monitoring was undertaken in accordance with the requirements specified in the Services Brief. The following scope of work was undertaken:

- Review of previous monitoring data;
- Follow previously developed and implemented Data Quality Objectives ("**DQO**") for the investigation of groundwater;
- Prepare a site-specific health, safety and environmental plan and safe work method statement prior to commencing the works;
- Undertake fieldwork in accordance with Hazmat's standard field and quality assurance/control procedures and in consideration of relevant industry guidelines;
- Sampling and analysis for the range of specified parameters at 42 of the 50 groundwater wells and five (5) surface water monitoring locations conducted in June and July 2022, as follows;
 - Ammonia;
 - Phenols;
 - Cyanide (Total, Weak Acid Dissociable and Free);
 - Hexavalent chromium;
 - Molybdenum;
 - Lead; and
 - Total PAHs.

- Collect quality control samples in accordance with the frequency specified in the Brief and in accordance with the relevant Australian Standards; and
- Review analytical results and prepare a report detailing the methodology and outcomes of the monitoring program including conclusions regarding the Site's contamination status.

2 SITE INFORMATION

2.1 Site Identification

The Site comprises of Part Lot 7, Lot 10, Lot 11 and Part Lot 14 of DP11194525. A site map showing the study area is attached as **Figure 3** in **Appendix A**.

2.2 Site Description

KIWEF is approximately 197 ha in area on the western portion of Kooragang Island. The site has been filled with waste materials relating to the operation of the former BHP Steel Works from the late 1960's until 2001.

The former landfill was operated by BHP under EPL6437 between 1997 and 2003 (PoEO licensing did not exist prior to 1997, and the landfill was regulated under State Pollution Control Commission and other environmental protection regulations). In 2003 the landfill was transferred to the State under an s58 License transfer, which was subsequently monitored under the EPL by the State until it was surrendered under s80 N1111840 in December 2010.

2.3 Site History

Prior to ownership by BHP, the KIWEF site was originally a series of low-lying wetlands. Over time these wetlands have been filled by mostly inert materials arising from the operations of the former BHP steel works. The site received BHP waste from the late 1960's to 2001. Currently the site comprises filled and partially filled waste emplacement cells, recent construction activity on the adjacent NCIG lease lands and various ponds and surrounding wetlands. Since closure of the landfill in 2010 the State is progressing a sequence of works to provide a suitable final landform, cap and drainage system to the site consistent with PoEO requirements. The first stages of capping have been completed and further works are being progressed in accordance with regulatory requirements.

2.4 Previous Monitoring

Prior to the Surrender of the Licence in 2010, HCCDC conducted an extensive review of the monitoring programme which was then documented in the report *KIWEF Groundwater and Surface Water Rationalisation Report* (GHD, 2010). The recommendations of the report formed the basis for the annual ongoing post-licence monitoring set out in the Notice.

Analytical results from previous monitoring events were provided by HCCDC and form part of this report as an electronic attachment. It is therefore assumed that all results are of good quality and obtained using standard industry practice.

The last round of monitoring was conducted by Hazmat in 2021. Hazmat sampled a total of 42 of the 50 groundwater monitoring wells and five (5) surface water bodies. A number of wells (8) were unable to be sampled due to either being destroyed, insufficient groundwater, or inaccessibility to the sample sites.

3 ASSESSMENT CRITERIA

3.1 KIWEF Annual Surface and Groundwater Monitoring Criteria

The laboratory analysis conducted as part of the 2022 KIWEF annual monitoring is as per the sample analysis requirements outlined in the Notice. Groundwater and surface water concentrations were compared to Groundwater Investigation Levels ("GIL") published in the ASC NEPM. The GIL are similar to a set of trigger values published by the Australian and New Zealand Environment Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand ("ANZECC/ARMCANZ") The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000). The ANZECC (2000) trigger values were also adopted in the NSW EPA Guidelines for the Assessment and Management of Groundwater, 2007 (NSW EPA 2007).

Assessment values are established by accounting for the protection of environmental values. These values are defined in ANZECC (2000) as:

"...particular values or uses of the environment that are important for a healthy ecosystem or for public benefit, welfare safety or health which require protection from the effects of pollution, waste discharges and deposits."

The following values will be considered when applying assessment criteria:

- Relevant aquatic ecosystems; and
- Relevant human uses (such as, potable water, agricultural water, industrial water, aquaculture and farming for human consumption, recreational, visual amenity).

The ANZECC (2000) guideline provides three grades of guideline trigger values (i.e. high, moderate or low reliability trigger values) in Section 3.4.2.3 (procedures for deriving trigger values for toxicants). The grade depends on the data available and hence the confidence or reliability of the final figures. Only high and moderate reliability trigger values are reported in Table 3.4.1 of ANZECC (2000). The GIL were adopted for a 95% protection of aquatic species. Because of the tidal nature of the Hunter River, considered to be the receiving body, the marine values were used. These trigger values are in line with values adopted during previous monitoring. In addition, current results were compared to previous results in order to detect any trends or natural attenuation of contaminants. The adopted monitoring criteria were applied to groundwater and surface water as a screening level and are listed in **Table 1.** It is noted that the terms 'trigger value' and 'GIL' are used interchangeably in this report.

Analyte	ASC NEPM GIL for Marine Waters	ANZECC (2000) Slightly – Moderately Disturbed Systems Trigger Values
Inorganics		
Chromium VI	4.4	4.4
Lead	4.4	4.4
Molybdenum	-	23*
Ammonia	910	910
Cyanide	4	4
Organics		
Naphthalene	50	70
Benzo(a)pyrene	-	-
Phenols	400	400

Table 1: Adopted Monitoring Criteria for Groundwater and Surface Water (µg/I)

*- ANZECC 2000 low reliability value

3.2 Absence of Specific Criteria

In the absence of specific criteria, any analytes reported above the laboratory limit of reporting ("**LOR**") will be reviewed and professional judgement will be applied to assess the detrimental effects. The laboratory LOR will be at or below the adopted assessment criteria where practicable. Where specific criteria are not available, the standard laboratory test, and therefore LOR, will be used. As there are no published criteria for Total PAHs, Hazmat has adopted the laboratory LOR as the assessment criteria for Total PAHs.

4 FIELDWORK METHODOLOGY

Sampling for the annual monitoring event was conducted between the 20th of June and 6th of July 2022 and included the collection of groundwater samples from 42 groundwater monitoring wells and five (5) surface water locations. Sample locations are shown in **Figure 2** in **Appendix A**.

During the monitoring event, the majority of the wells and surface water bodies were easily located and accessed. The wells that were not sampled for the 2022 monitoring period are listed in the **Table 2** below.

Table 2. List of Monitoring	y Wells Not Sampl	ed – 2022 Monitoring	1 Fvent
	y wells not sump		JLVCIII

Well ID	lssue	Recommended Action
K12/9	Well was inaccessible due to flooding in the area and could not be sampled.	Retry next event if undertaken.
K12/9E	Well was inaccessible due to flooding in the area and could not be sampled.	Retry next event if undertaken
K12/1E	Well was inaccessible due to well cap being stuck and could not be sampled.	Retry next event if undertaken
K12/6	Well was damaged during Ash Island fires in 2019.	Discussion required with EPA to confirm whether continued monitoring at location is required and if well should also be replaced.
E61/S	Well was dry and could not be sampled.	Retry next event if undertaken.
K7/2N	Well was dry and could not be sampled.	Retry next event if undertaken.
GHD01N	Well obstruction. Well was blocked with tubing and could not be sampled.	Discussion required with EPA to confirm whether continued monitoring at location is required and if well should also be replaced.
GHD01S	Well obstruction. Well was blocked with tubing and could not be sampled	Discussion required with EPA to confirm whether continued monitoring at location is required and if well should also be replaced.

In order to rectify the above issues, it is recommended that the EPA be consulted to determine if ongoing monitoring of these locations is required and therefore, whether they can be taken out of the next monitoring round (if to be undertaken) or that they must be repaired or replaced.

As a result of the above, 42 groundwater samples and five surface water samples were collected.

4.1 Fieldwork Guidelines

The collection of samples was undertaken in general accordance with Hazmat's Standard Operating Procedures and the following Australian Standards ("**AS**") and guidance documents:

- NEPC (2013) ASC NEPM Schedule B(2) Guideline on Data Collection, Sample Design and Reporting, 2013; and
- Australian Standard (AS/NZS 5667.11:1998) Water quality—Sampling Part 11: Guidance on sampling of groundwater.

4.2 Surface Water Sampling

A total of five (5) surface water samples were collected, one from each surface water location. Surface water samples were collected directly from the surface water body using a sampling arm attached to a laboratory supplied unpreserved bottle so as to avoid disturbing sediments. The

unpreserved bottles were submerged just below the water surface and disposable nitrile gloves were worn for all sampling. The following water quality parameters were taken using a YSI water quality meter:

- Dissolved oxygen ("**DO**");
- Redox;
- Temperature;
- pH; and
- Electrical Conductivity ("**EC**").

The samples were then decanted into laboratory supplied and preserved bottles suitable for the chosen analytes. The water quality parameters are included in the Results Summary in **Table B** in **Appendix D**.

The calibration certificate for the water quality meter is attached in **Appendix G**.

4.3 Groundwater Sampling

A total of 42 groundwater monitoring wells were sampled. Prior to sampling, concentrations of Volatile Organic Compounds ("**VOCs**") in the wells were determined using a calibrated MiniRAE 3000 Photoionisation Detector ("**PID**"). Standing Water Levels ("**SWL**") were measured from a fixed top-of-casing mark point prior to sampling. Wells were sampled using one of the following sampling methods:

- Low flow micropurge pump wells were purged until the field parameter readings were stabilised and measured with a YSI water quality meter as per the low flow sampling protocol; and
- Disposable hand bailers a minimum of three well volumes were removed and purging was continued until field parameters stabilised and measured by a YSI water quality meter to ensure a representative sample was collected.

These methods were chosen for the Site due to the requirement for high integrity samples. The low flow pump was the preferred sample collection method due to the potential presence of volatile compounds. The hand bailer was only used for monitoring wells where the low flow pump did not fit inside casings and for wells which exhibited elevated sediment levels, causing blockage of the low flow pump.

At each sampling location, the following field parameters were monitored with a YSI water quality meter:

- Dissolved oxygen ("**DO**");
- Redox;
- Temperature;
- pH; and
- Electrical Conductivity ("**EC**").

The field parameters were considered stable when the pH was within 0.1 pH units of the preceding measurement and DO was within 10%. Field record sheets are attached in **Appendix F**. The calibration certificates for the interface probe, water quality meter and micropurge kit are attached in **Appendix G**.

Samples which were analysed for heavy metals and hexavalent chromium were field filtered with disposable 45 micron filters before being placed into the sample bottle.

4.4 Sample Analysis

Laboratory analysis was conducted in accordance with the standard test methods outlined in Schedule B (3) of the NEPM (2013) for waters. The selected laboratories are National Association of Testing Authorities ("**NATA**") accredited for the analyses performed. The water samples were analysed for a suite of analytes which included:

- Ammonia;
- Phenols;
- Cyanide (Total, Weak Acid Dissociable and Free);
- Hexavalent chromium;
- Molybdenum;
- Lead; and
- Total PAHs.

Hazmat notes that, for some samples, only some of the above analytes were tested, in accordance with the Brief.

4.5 Sample Handling and Transport

Groundwater and surface water samples were placed in laboratory supplied containers suitable for the chosen analytes. Samples were placed directly into a chilled esky following collection and transported to an accredited laboratory under chain of custody ("**CoC**") protocols within appropriate holding times. A copy of the CoC documentation is provided in **Appendix E**.

Envirolab was used as the primary laboratory for the project and ALS as the secondary laboratory. Both laboratories are National Association of Testing Authorities ("**NATA**") accredited for the performed analysis.

4.6 Decontamination

The decontamination of sampling equipment was performed to minimise risks to health and safety, and to reduce the potential for cross-contamination between samples. For each sample, a new set of disposable nitrile gloves was used. The samples were placed into laboratory supplied sample bottles. Between each groundwater sample, the low flow pump was decontaminated. This process included a scrubbing brush and a solution of Decon 90 and tap water followed by a rinse in deionised water.

Decontamination of the sampling equipment was not required for surface water as samples were collected directly from the surface water body into the required analytical bottles. A new set of appropriately preserved sample bottles was used to collect each surface water sample.

4.7 Quality Assurance/Quality Control

Analytical data validation is the process of assessing whether the data is in compliance with method requirements and project specifications. The primary objective of this process is to ensure that data of known quality are reported, and to identify if data can be used to fulfil the overall project objectives.

The data validation guidelines adopted are based upon the following data validation guidance documents published by the United States Environmental Protection Agency (USEPA):

• USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 540-R-10-011, dated January 2010);

- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, dated June 2008); and
- National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM 2013).

The process involves the checking of analytical procedure compliance and the assessment of the accuracy and precision of analytical data from a range of quality control measurements generated from both field sampling and analytical programs. Specific elements that have been checked and assessed for this project include:

- preservation and storage of samples upon collection and during transport to the laboratory;
- holding times;
- use of appropriate analytical procedures;
- required Limit of Reporting ("LOR");
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- rinsate blanks;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds); and
- the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The description of sampling, analysis and data quality objectives and validation methods that were followed for this project are located in the quality assurance and quality control section presented in **Appendix C**. The outcomes are also summarised in **Table 3**.

4.8 Meteorological Conditions

Meteorological conditions for June and July 2022 were sourced from the Bureau of Meteorology's ("**BoM**") Newcastle Nobbys signal station (Station 061055). The rainfall data for June and July 2022 are shown in **Figure 1** and **Figure 2** below. There were 7 rain events in the month of June with the highest amount of rainfall being 16.4mm. June was generally a dry month with below average overall rainfall observed.

Up until the end of monitoring, the month of July had 5 rain events with the highest amount of rainfall being 54.0mm. July was a very wet month with above average rainfall observed.

(Source: BoM, 2022)

Figure 1: June 2022 Rainfall Data

(Source: BoM, 2022)

Figure 2: July 2022 Rainfall Data

5 SUMMARY OF RESULTS

5.1 PID Screening

Prior to sampling of all groundwater wells, concentrations of VOCs were determined using a calibrated PID. All sampled wells reported VOC concentrations below 5 ppm.

Reported VOC concentrations for all wells sampled are presented in **Table A** in **Appendix D**. The calibration certificate for the PID is attached in **Appendix G**.

5.2 Field Water Quality Parameters

Reported field water quality parameters for all wells sampled are presented in **Table A** in **Appendix D**.

A summary of the field water quality parameters observed are as follows:

- Electrical conductivity readings ranged from 3.9 µs/cm to 47,123 µs/cm;
- pH readings ranged from 5.26 to 10.93;
- Dissolved oxygen readings ranged from 0.33 to 11.23 mg/L;
- Redox readings ranged from -380.9 mV to 458.9 mV; and
- Temperature ranged from 13.8°C to 22.9°C.

5.3 Groundwater

Groundwater analytical results are presented in **Table B** in **Appendix D**. A discussion on the longerterm trends of these results and what the results mean is presented in **Section 6**.

The following observations are made:

- The reported concentrations of ammonia exceeded the adopted ANZECC Criteria in 23 wells. The following wells were above the ANZECC Criteria: K12/7E, NCIG2, K5/5S, K9/2E, K9/3N, K11/1S, K11/3W, K12/4N, K11/2W, K9/4W, K12/10, K7/1, K8/5E, K7/4N, BHe29S, E61D, K8/5W, K7/2S, K9/4E, K10/2NN, K11/3E, 344B and BH21S. The highest concentration of ammonia was observed at well K12/4N which reported a concentration of 48 mg/L, which is 52 times above the ANZECC Criteria. K12/4N is located outside the KIWEF footprint and is approximately 800 m northwest of the KIWEF boundary within the deep estuarine aquifer.
- The samples analysed for total phenols were detected below the ANZECC Criteria.
- Samples analysed for total cyanide exceeded the ANZECC Criteria in 9 samples. The following wells were above the guideline: K5/6S, K11/3W, K5/6N, K7/1, K8/5E, 344A, K7/4N, K8/5W and BH21S. The highest concentration was observed at well BH21S which reported a concentration of 0.21mg/L which is 52 times above the ANZECC Criteria. The wells that reported a detectable total cyanide concentration also reported Weak Acid Dissociable ("WAD") and free cyanide concentrations equal to or below the LOR.
- The reported concentrations of hexavalent chromium were below the LOR for all samples.
- Samples analysed for dissolved molybdenum exceeded ANZECC Criteria in six samples; K7/1, K10/2, K8/5E, K7/4N, K8/5W and BH21S. The highest concentration was observed at well BH21S which reported a concentration of 540µg/L (0.54mg/L) which is more than 15 times above the ANZECC Criteria.

- Samples analysed for dissolved lead were detected below the ANZECC Criteria.
- Samples analysed for naphthalene detected concentrations below the ANZECC Criteria with the exception of well BH21S which reported a concentration of 210 μ g/L which 3 times above the ANZECC Criteria.
- The samples also reported concentrations of total PAHs below the LOR with the exception of wells K12/7E, K7/1, K8/5E, K8/5W, K7/2S, K11/1, K10/2NN and BH21S. BH21S reported the highest concentration of 240µg/L which is more than 400 times above the LOR.
- Samples analysed for benzo(a)pyrene detected concentrations below the LOR, with the exception of sample BH21S, which recorded a concentration of 0.6µg/L.

5.4 Surface Water

Surface water analytical results are shown in **Table B** in **Appendix D**. The following observations are made:

- The samples reported ammonia concentrations below the ANZECC Criteria.
- The samples reported a total phenol concentration below the LOR and adopted ANZECC Criteria.
- The results for free, WAD and total cyanide were reported below the LOR and respective ANZECC Criteria.
- The samples reported total molybdenum concentrations below the adopted ANZECC Criteria with the exception of KS2/1, which reported concentrations of 27µg/L (0.027mg/L which is approximately one and half times above the ANZECC Criteria.
- The samples reported total lead concentrations below the adopted ANZECC Criteria.
- The samples analysed for total PAH including naphthalene and benzo(a)pyrene reported concentrations below the LOR and adopted ANZECC Criteria.

5.5 Quality of Analytical Data

The outcome of the data quality assessment is summarised in **Table 3**. On the basis of the analytical data validation procedure employed, the overall quality of the groundwater and surface water analytical data produced is considered to be of an acceptable standard for interpretive use. Details of the methodology and outcome of the quality assurance and quality control for the project is outlined in **Appendix C**.

Table 3: Data Quality

Requirement	Required Frequency	Compliance	Comments
Field Duplicates (intra-laboratory duplicates)	5% (primary lab) or 1 per batch	Yes	Three duplicate samples were collected for 47 primary samples (42 groundwater and 5 surface water).
			Intra-laboratory duplicate samples were collected by splitting each sample into the primary and duplicate sample containers.

Requirement	Required Frequency	Compliance	Comments
Check Duplicates (inter-laboratory duplicates	5% (secondary lab) or 1 per	Yes	Three duplicate samples were collected for 47 primary samples (42 groundwater and 5 surface water).
	batch		Inter-laboratory duplicate samples were collected by splitting each sample into the primary and duplicate sample containers.
Rinsate sample	One per day	Yes	11 rinsate samples were collected, one for each day, from the sampling equipment. The results were reported below LOR for the analytes tested.
Laboratory Duplicates	10% (primary lab) or 1 per batch	Yes	The laboratory duplicates meet the required frequency.
Laboratory Spikes	5% (primary lab) or 1 per batch	Yes	The laboratory spikes meet the required frequency.
Laboratory Control Samples	5% or 1 per batch	Yes	It is noted that the Brief requires 10 % while the ASC NEPM requires 5 %.
RPDs	-	Yes	The majority of calculated RPDs fall within the acceptable range of <50 %, the exception being samples with concentrations of <10 times the LOR which can show a higher RPD.
			Where concentrations of either sample is <lor <10="" applies.<="" limit="" lor,="" no="" or="" td="" the="" then="" times=""></lor>
			Appendix C provides details on individual RPDs.
Sampling equipment properly decontaminated	Each sample	Yes	Disposable equipment used where possible. The pump, interface probe and water quality meter were decontaminated between sampling locations.
Sample Preservation	All samples	Yes	Samples were properly preserved. Samples were compliant with required storage temperature.
Samples delivered to laboratory within sample holding times.	All samples	Yes	Confirmed from COCs and laboratory reports.
Equipment Calibration	Once per event	Yes	Refer to Appendix G .
Analytical procedures	All procedures	Yes	All procedures are NATA accredited.
SOP and competent field personnel	Always	Yes	Sampling procedures follow industry standards, and field staff are competent in sampling methods and QA/QC protocols.

6 DISCUSSION

6.1 KIWEF Annual Monitoring

Analytical results for groundwater and surface water show that, with the exception of ammonia, total cyanide, dissolved molybdenum, phenols, dissolved lead, and naphthalene, the majority of wells did not report concentrations above the ANZECC Criteria. Results that exceed the adopted monitoring criteria were compared to historical data dating back to 1999. These are discussed in **Sections 6.1.1** to **6.1.4**. The results summary presented in **Table B** of **Appendix D** indicates for each sample whether it was collected from surface water or from a bore constructed in fill, shallow estuarine or deep estuarine. Historical data are provided in **Appendix H**.

6.1.1 Fill Bores

Three of the ten wells in fill material (K7/1, K8/5E, and K7/4N) reported ammonia concentrations above the ANZECC Criteria. Total cyanide was also detected at a concentration above the ANZECC Criteria in wells K7/1, K8/5E, 344A, and K7/4N. Concentrations of WAD and free cyanide were also detected below the LOR indicating that the cyanide present is not bio-available. Molybdenum was detected above the ANZECC Criteria in four wells (K7/1, K10/2, K8/5E, and K7/4N). Lead was detected below the ANZECC Criteria in all wells.

A comparison to historical data for the wells where contaminants were recorded above the adopted ANZECC Criteria indicated the following:

- Ammonia concentrations were lower than the historical maximum concentrations;
- Total cyanide concentrations were lower than the historical maximum concentrations;
- Molybdenum concentrations were lower than the historical maximum concentrations; and
- Lead concentrations were also lower than the historical maximum concentrations.

Ongoing monitoring is recommended to observe the potential fluctuations in PAH, total cyanide, ammonia, and molybdenum concentrations within the fill bores, with particular attention to sample location K7/1.

6.1.2 Shallow Estuarine Bores

A total of 20 bores were monitored in the shallow estuarine aquifer. Reported concentrations for ammonia were above the ANZECC Criteria in 9 samples. Total cyanide concentrations exceeded the adopted ANZECC Criteria in two samples. Concentrations of WAD and free cyanide were also detected below the LOR indicating that the cyanide present is not bio-available. Molybdenum concentrations exceeded the adopted ANZECC Criteria. Naphthalene concentrations exceeded the adopted ANZECC Criteria in one sample and total PAH's were recorded above the adopted laboratory LOR Criteria in five samples.

A comparison to historical data for the wells where contaminants were recorded above the adopted ANZECC Criteria indicated the following:

- Concentrations with ammonia were consistent compared to the historical maximum concentrations;
- Total cyanide was either consistent with, or lower than, the historical maximum concentrations;
- Molybdenum was either consistent with, or lower than, the historical maximum concentrations; and
- The high naphthalene result recorded in well BH21S is lower than the historical maximum concentrations.

Ongoing monitoring is recommended to observe the potential fluctuations in PAH, total cyanide, ammonia, lead and molybdenum concentrations within the shallow estuarine bores. While fluctuating lead concentrations have historically been recorded in the sample locations, the individual concentrations recorded have remained historically low, and may be representative of background conditions. Nevertheless, ongoing monitoring is recommended.

6.1.3 Deep Estuarine Bores

A total of 12 bores were monitored in the deep estuarine aquifer. Reported concentrations for ammonia were above the ANZECC Criteria in 11 samples. Total cyanide was recorded above the adopted ANZECC Criteria in sample K5/6S and K11/3W. Total PAH's was recorded above the adopted laboratory LOR Criteria in one sample K12/7E.

A comparison to historical data for the wells where contaminants were recorded above the adopted ANZECC Criteria indicated the following:

- Concentrations of ammonia were either consistent with or lower than the historical maximum concentrations. The highest concentrations were detected within the deep estuarine aquifers;
- Total cyanide was lower than the historical maximum concentrations; and
- Total PAH's were lower than the historical maximum concentrations.

Ongoing monitoring in line with the Notice is recommended to observe the potential fluctuations in ammonia, phenol, cyanide, naphthalene and total PAH concentrations within the deep estuarine bores. While fluctuating phenol and total PAH concentrations have historically been recorded in the sample locations, consistent low or elevated results have been recorded at individual sample locations. Ongoing monitoring is therefore recommended to assess if these trends remain consistent.

6.1.4 Surface Water

All five surface water locations were sampled and the majority of reported concentrations for all analytes were below the LOR and/or the ANZECC Criteria with the exception of sample location KS2/1 which recorded molybdenum concentrations above the ANZECC Criteria. The levels were lower than or consistent with the historical averages for molybdenum.

Compared with historical data, surface water quality is in line with previous results and concentrations appear generally lower than previously observed.

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The following conclusions are made based on the reported data:

- Ammonia concentrations, although there were numerous exceedances of the adopted ANZECC Criteria, are generally lower than the historical observations. The highest concentration was detected within background location K12/4N and the concentrations were lower than the historical maximum concentrations at this location.
- Total cyanide concentrations in groundwater, although some exceedances of the adopted ANZECC Criteria exist, are generally at levels consistent with historical observations. Concentrations of WAD and free cyanide were also detected below the LOR indicating that the cyanide present is not bio-available.
- Concentrations for heavy metals (Pb, Mo, Cr VI), although some exceedances of the adopted ANZECC Criteria exist, are generally at levels consistent with historical observations.
- Concentrations for phenol are at levels below or consistent with historical observations.
- Concentrations of PAH are below the LOR in the majority of samples. However, a few samples exceed the adopted laboratory LOR Criteria. The PAH concentrations observed during the 2022 monitoring event are generally consistent or lower than those detected in previous recent results.
- The surface water quality observed in this round of monitoring is generally consistent with historical data and meets most of the adopted ANZECC Criteria.
- The current contaminant concentrations at the KIWEF have been detected at levels generally consistent with historical concentrations (collected since 1999).
- The contaminant concentrations detected at boundary monitoring points, or lack thereof, indicate that offsite migration of contaminants was not occurring.

7.2 Recommendations

The following recommendations are made based on the reported data:

- HCCDC to conduct discussion with EPA in regard to the installation or replacement monitoring wells for lost or damaged wells identified during the most recent monitoring round;
- HCCDC to undertake consultations with the EPA in regard to rationalising the monitoring network as there has been a reduction in contaminant concentrations in some of the locations on site;
- Ongoing groundwater and surface water monitoring in accordance with Surrender notice and; and
- Ongoing vegetation clearing and maintenance prior to next round of monitoring.

8 LIMITATIONS

Hazmat prepared this report for the purpose set out in **Section 1** and as agreed to by the Client. Any advice, opinions or recommendations contained in this document should be read and relied upon only in the context of the document as a whole and are considered current to the date of this document. Any other party should satisfy themselves that the scope of work conducted and reported herein meets their specific needs. Hazmat cannot be held liable for third party reliance on this document, as Hazmat is not aware of the specific needs of the third party.

From a technical perspective, the subsurface environment at any site may present substantial uncertainty. It is a heterogeneous, complex environment, in which small subsurface features or changes in geologic conditions can have substantial impacts on water and chemical movement. Uncertainties may also affect source characterisation assessment of chemical fate and transport in the environment, assessment of exposure risks and health effects, and remedial action performance.

Hazmat professional opinions are based upon its professional judgement, experience, and training. These opinions are also based upon data derived from testing and analysis described in this document. Hazmat has limited its investigation to the scope agreed upon with its client. Hazmat believes that its options are reasonably supported by the testing and analysis that have been done, and that those opinions have been developed according to the professional standard of care for the environment consulting profession in this area at this time. That standard of care may change and new methods and practices of exploration, testing, analysis and remediation may develop in the future, which might produce different results. Hazmat professional opinions contained in this document are subject to modification if additional information is obtained, through further investigation, observations, or validation testing and analysis during remedial activities.

Finally, Hazmat does not make any other warranty, expressed or implied, as to the professional advice contained in this report.

9 **REFERENCES**

- Australian and New Zealand Environment Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand (ANZECC/ARMCANZ) (2000) The Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- Australian Standard (AS/NZS 5667.11:1998) Water quality—Sampling Part 11: Guidance on sampling of groundwater;
- Australian Standard (AS4482.1-2005) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-volatile and semi-volatile compounds;
- Australian Standard (AS4482.2-1999) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile substances;
- National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines 6;
- NEPC (2013) ASC NEPM Schedule B(2) Guideline on Data Collection, Sample Design and Reporting, 2013;
- NSW EPA (2007) Guidelines for the Assessment and Management of Groundwater, 2007;
- NSW EPA (1995), Contaminated Sites: Sampling Design Guidelines, (NSW EPA, 1995);
- NSW EPA Environmental Protection License No. 6437; and
- RCA Australia (2014) KIWEF Groundwater and Surface Water Rationalisation Report.

Licence - 6437

Department of Environment, Climate Change and Water NSW

HUNTER DEVELOPMENT CORPORATION , ABN 94 688 782 063, PO BOX 813,

Attention: Mr. Michael Bardsley

NEWCASTLE NSW 2300

Notice Number 1111840 File Number LIC07/20 Date 08-Dec-2010

APPROVAL OF THE SURRENDER OF LICENCE NO. 6437

BACKGROUND

A. The following licensee(s):

HUNTER DEVELOPMENT CORPORATION

94 688 782 063

applied to the Environment Protection Authority ("EPA") to surrender Environment Protection Licence No. 6437 ("the licence") issued under the *Protection of the Environment Operations Act 1997* ("the Act"). The licence authorises the carrying out of Scheduled Activity - Premises Based at KOORAGANG ISLAND, CORMORANT DRIVE, KOORAGANG, NSW.

- B. The EPA received the application on 13-Jan-2010.
- C. The following documents were supplied in support of the application:
 - a. Hunter Development Corporation Report on KIWEF Revised Final Landform and Capping Strategy August 2009 Revision 2, prepared by GHD;
 - b. Hunter Development Corporation Revised Capping Strategy Flora and Fauna Impact Assessment – January 2010 – Revision 3, prepared by GHD; and
 - c. Hunter Development Corporation KI Groundwater and Surface Water Monitoring Trend Analysis Report January 2010 Revision 1, prepared by GHD.

APPROVAL OF THE SURRENDER OF A LICENCE

1. The surrender of the licence is approved.

Department of Environment, Climate Change and Water NSW

Licence - 6437

PART A GENERAL CONDITIONS

- 2. The approval of the surrender is subject to the following conditions:
 - a) The licensee must provide the EPA with an Annual Return in relation to compliance with the conditions of the licence during the period beginning on the last licence anniversary date and ending on the date that the surrender of the licence takes effect as set out in point 5 below.
 - b) The Annual Return must be supplied to the EPA within 60 days of the date from which this notice operates (see note at the end of this notice).
 - c) The content and form of the Annual Return must be in accordance with the applicable reporting conditions in the licence before it was surrendered.
 - d) The Annual Return must be signed in accordance with the applicable reporting conditions in the licence before it was surrendered.
- 3. This surrender notice applies to the following land on Kooragang Island as defined by Lot and DP numbers:

Part Lot 7, Lot 10, Lot 11 and Part Lot 14 of DP1119752,

and shown on map titled '*Plan of Subdivision of Lot 122 DP874949, Lot 2 DP581473, Lot 6 DP1015754 and Lots 71 and 74 in DP1119950*' date of survey 2 November 2007, Surveyors Reference HW43.01.03.00 and registered on 29 November 2007, attached to this notice.

Note: Part Lot 14 DP1119752 refers to that area identified as Lot 14 DP 1119752 excluding land labelled as '*Extra Land Area 2*', '*Extra Land Area 4* and '*Extra Land Area 5*' shown on map titled '*Plan of Extra Land Showing Coordinates Kooragang* dated 08/06/10, attached to this notice.

PART B SITE SPECIFIC CONDITIONS

- 4. Final Capping
 - a) The licensee shall implement the final landform and capping strategy as detailed in the document titled Hunter Development Corporation Report on KIWEF Revised Final Landform and Capping Strategy August 2009 Revision 2, prepared by GHD, ('the Landform and Capping Strategy') by 28 March 2013.
 - b) Three months prior to the commencement of final capping of Pond 5 (defined in Figure 4 Areas of Contamination Hotspots – 20 May 2009, provided in the Landform and Capping Strategy) the licensee shall provide a report to the EPA, that confirms the geotechnical stability of the geosynthetic liner to withstand the additional weight of a coal washery reject capping layer as described in the Landform and Capping Strategy.
 - c) The licensee shall update the Materials Management Plan provided in the Landform and Capping Strategy and provide the updated Materials Management Plan for approval to the EPA by 30 November 2011. The updated Materials Management Plan must provide and commit to specific engineered and/or management measures to be adopted for contingency purposes if/when unknown contaminated material is encountered during the cut and fill component of the Landform and Capping Strategy.
 - d) The licensee shall implement, maintain and operate erosion and sedimentation controls during the final capping process to ensure that there is no sedimentation of waterways.
 - e) All activities associated with the closure, capping, rehabilitation and post-closure maintenance and monitoring at the premises must be carried out in a competent manner. This includes:
 - i) The processing, handling, movement and storage of materials and substances used at the premises; and

Licence - 6437

Department of Environment, Climate Change and Water NSW

ii) The treatment, storage, processing, reprocessing, transport and disposal of any waste generated by the activity.

- f) All plant and equipment installed at the premises or used in connection with the closure, capping, rehabilitation and post-closure maintenance and monitoring activities at the premises must be:
 - i) maintained in a proper and efficient condition; and
 - ii) operated in a proper and efficient manner.
- g) All activities associated with the closure, capping, rehabilitation and post-closure maintenance and monitoring at the premises must be carried out in a manner that will minimise the emission of dust from the premises.
- h) Within three months of completion of the installation of the final cap, the licensee must provide the EPA with a written Validation Report that includes:
 - i) Advice that the final cap has been installed;
 - ii) Advice from a suitably qualified and experienced person as to whether or not the cap was installed in accordance with Chapter 7 of the Landform and Capping Strategy and relevant conditions of this Notice, or future variations to this Notice;
 - iii) Provision of the results of all relevant test results to validate that the permeability of the final capping layer is less than or equal to $K = 1 \times 10^{-7}$ m/s. Permeability testing must be taken of the sealing layer material at a rate of not less than 1 per 2000T (or 1250m3);
 - iv) Provision of information that establishes the thickness of the installed sealing and revegetation layers in the format of either:
 - (i) As constructed drawings, including cross sections, of the surfaces of the coal washery reject layer; and
 - (ii) The results of surveys undertaken for each capping layer by a registered surveyor.
- i) The Validation Report must be prepared by a suitably qualified person who had suitable involvement in overseeing the cap's installation.
- j) At the completion of the final cap, the licensee shall undertake inspections of the cap, on a six (6) monthly basis, to detect and remediate areas where the cap has eroded, degraded or slumped.
- k) The licensee shall provide the EPA with a written statement of the results of the inspection required by condition 4(j) on an annual basis. The statement must describe the condition of the cap and any actions taken to remediate the cap as a result of the inspection. The first statement must be provided to the EPA by **30 September 2013** with subsequent reports provided 12 monthly following the provision of the first report.
- 5. Environmental Monitoring
 - a) The licensee shall prepare and submit a K26/32 Groundwater and Green and Golden Bell Frog Monitoring Program to the EPA for approval by **13 April 2011.** The Monitoring program shall:
 - i) Document known risks associated with the contaminant hotspot located in the area known as K26/32 (defined in Figure 4 - Areas of Contamination Hotspots – 20 May 2009, provided in the Capping Strategy);
 - ii) Be designed to assess the:
 - (i) risk of contaminant mobilisation; and
 - (ii) ongoing viability of the Green and Golden Bell Frog population in the K26/32 area; and

Licence - 6437

Department of Environment, Climate Change and Water NSW

- iii) Identify triggers for Green and Golden Bell Frog management intervention and/or actions required to address contaminant mobilisation.
- b) The licensee shall prepare and submit a Green and Golden Bell Frog Management Plan to the EPA for approval by 13 April 2011. The Plan shall encompass the entire premises occupied by the licensee and include, but not be limited to:
 - i) Management measures to be undertaken to minimise the spread of the amphibian *Chytrid* fungus including:
 - (i) the training of project personnel in site hygiene management; and
 - (ii) site hygiene procedures for project personal, mobile plant and equipment, in accordance with the NPWS Hygiene Protocol for the Control of Disease in Frogs 2001; and
 - ii) Measures to maintain, restore and enhance Green and Golden Bell Frog habitat, including movement corridors across the site.
- c) The licensee shall undertake the groundwater monitoring program as outlined in Table 1, 2 and 3 of this notice. Monitoring locations are those groundwater bores identified in both the fill and natural aquifers as shown on the map titled '*Figure 2 Rationalised Groundwater and Surface Water Monitoring Program*', dated 28 SEP 2010 and attached to this notice.

Table 1 – Deep Estuarine Wells being K5/5S, K5/6S, K7/2N, K9/2E, K9/3N, K9/4W, K11/1S, K11/2W, K11/3W, K12/1E, K12/3N, K12/4N, K12/7E, K12/9E and K12/10

Pollutant	Units of Measure	Frequency	Sampling Method
Ammonia	mg/L	Every 12 months	Grab sample
Phenols ¹	mg/L	Every 12 months	Grab sample
Cyanide (Total, WAD and free)	mg/L	Every 12 months	Grab sample
Chromium (hexavalent)	mg/L	Every 12 months	Grab sample
Molybdenum (dissolved) ²	mg/L	Every 12 months	Grab sample
Lead (dissolved) ³	mg/L	Every 12 months	Grab sample
Total PAHs	mg/L	Every 12 months	Grab sample
Conductivity	mg/L	Every 12 months	Grab sample
рН	рН	Every 12 months	Grab sample

¹ Not required to be analysed at wells K5/5S, K9/2E, K9/4W

² Not required to be analysed at wells K5/5S, K5/6S, K7/2N, K9/4W

³ Not required to be analysed at wells K5/5S, K5/6S, K7/2N, K9/2E, K9/4W

Department of Environment, Climate Change and Water NSW

Licence - 6437

Table 2 – Shallow Estuarine Wells being K3/1W, K5/6NN, K7/2S, K7/4S, K8/5W, K9/2W, K9/3S, K9/4E, K10/2NN, K11/1, K11/2E, K11/3E, K12/1W, K12/3W, K12/6, K12/7, K12/9, K12/10E, BHe29s, GHD02, E61D, 336B, 334B

Pollutant	Units of Measure	Frequency	Sampling Method
Ammonia	mg/L	Every 12 months	Grab sample
Phenols ⁴	mg/L	Every 12 months	Grab sample
Cyanide (Total, WAD and free)	mg/L	Every 12 months	Grab sample
Chromium (hexavalent)	mg/L	Every 12 months	Grab sample
Molybdenum (dissolved) ⁵	mg/L	Every 12 months	Grab sample
Lead (dissolved) ⁶	mg/L	Every 12 months	Grab sample
Total PAHs	mg/L	Every 12 months	Grab sample
Conductivity	mg/L	Every 12 months	Grab sample
рН	рН	Every 12 months	Grab sample

Table 3 – Fill Wells being K5/4, K5/5N, K5/6N, K7/4N, K8/5E, K10/2, K10/2N, K7/1, GHD01, E61S, 336A, 344A

Pollutant	Units of Measure	Frequency	Sampling Method
Ammonia	mg/L	Every 12 months	Grab sample
Phenols ⁷	mg/L	Every 12 months	Grab sample
Cyanide (Total ⁸ , WAD and free)	mg/L	Every 12 months	Grab sample
Chromium (hexavalent)	mg/L	Every 12 months	Grab sample
Molybdenum (dissolved) ⁹	mg/L	Every 12 months	Grab sample
Lead (dissolved) ¹⁰	mg/L	Every 12 months	Grab sample
Total PAHs	mg/L	Every 12 months	Grab sample
Conductivity	mg/L	Every 12 months	Grab sample
pH	рН	Every 12 months	Grab sample

⁴ Not required to be analysed at wells K7/4S, K8/3W, K9/2W, K9/4E, K10/2NN

⁵ Not required to be analysed at wells K5/6NN, K7/2S, K9/4E

⁶ Not required to be analysed at wells K5/6NN, K7/2S, K9/4E, K7/4S, K9/2W, K9/4E

⁷ Not required to be analysed at wells K5/4, K5/5N, K7/4N, K8/5E, K10/2, K10/2N

⁸ Not required to be analysed at wells K5/5N, K10/2, K10/2N

⁹ Not required to be analysed at wells K5/4, K5/5N, K5/6N

¹⁰ Not required to be analysed at wells K5/4, K5/5N, K5/6N, K7/4N

Department of Environment, Climate Change and Water NSW

Licence - 6437

d) The licensee shall undertake the surface water monitoring program as outlined in Table 4 of this notice. Monitoring locations are those surface water monitoring locations as shown on the map titled *'Figure 2 - Rationalised Groundwater and Surface Water Monitoring Program'*, dated 28 SEP 2010 and attached to this notice.

Table 4– Surface Water Monitoring at Locations KS2/1, KS1/3, K10/1, KS7/1, KS12/6

Pollutant	Units of Measure	Frequency	Sampling Method
Ammonia	mg/L	Every 12 months	Grab sample
Phenols	mg/L	Every 12 months	Grab sample
Cyanide (Total, WAD and free)	mg/L	Every 12 months	Grab sample
Chromium (hexavalent)	mg/L	Every 12 months	Grab sample
Molybdenum (dissolved)	mg/L	Every 12 months	Grab sample
Lead (dissolved)	mg/L	Every 12 months	Grab sample
Total PAHs	mg/L	Every 12 months	Grab sample
Conductivity	mg/L	Every 12 months	Grab sample
рН	рН	Every 12 months	Grab sample

- e) The licensee shall provide the EPA with a written report of the results of the monitoring required by condition 5(c) and 5(d) on an annual basis. The report must be in a tabular and graphical format and the first report must be provided by **30 June 2011** with subsequent reports provided 12 monthly after the provision of the first report.
- 6. Except as provided by section 84(2) of the Act, the approval of the surrender of the licence by this notice operates from the date of this notice.

Mr Grahame Clarke Regional Manager <u>North East - Hunter</u> (by Delegation)

INFORMATION ABOUT THIS NOTICE

- On the date that the surrender of your licence takes effect the current licence fee period comes to an end. However, the surrender of your licence does not affect your liability to pay fees owing to the EPA for that licence fee period or for any earlier licence fee period.
- If you have not already paid the administrative fee for the licence fee period which has just come to an end on the surrender of your licence you must still do so. The administrative fee for a licence fee period

Department of Environment, Climate Change and Water NSW

Licence - 6437

must be paid no later than 60 days after the beginning of that licence fee period (clause 36(1) of the *Protection of the Environment Operations (General) Regulation 2009*).

- Any load-based fees payable in relation to the licence fee period ending on the surrender of the licence must be paid no later than 90 days after the surrender of the licence takes effect (clause 37(1) of the *Protection of the Environment Operations (General) Regulation 2009*).
- Details provided in this notice will be available on the EPA's Public Register in accordance with section 308 of the Act.
- The reporting period on your Annual Return must be filled in to reflect the appropriate dates beginning on the last licence anniversary date and ending on the date that the surrender of the licence takes effect.
- The completed Annual Return must be sent by Registered Post no later than 60 days from the end of the reporting period to:

Regulatory and Compliance Support Unit Department of Environment, Climate Change and Water PO Box A290 SYDNEY SOUTH NSW 1232

• This notice is issued under section 80(1) of the Act.

Appeals against this decision

• You can appeal to the Land and Environment Court against this decision. The deadline for lodging the appeal is 21 days after you were given notice of this decision.

When this notice begins to operate

- The surrender of the licence specified in this notice begins to operate immediately from the date of this notice, unless another date is specified in this notice.
- If an appeal is made against this decision to approve the surrender of the licence and the Land and Environment Court directs that the decision is stayed the decision does not operate until the stay ceases to have effect or the Land and Environment Court confirms the decision or the appeal is withdrawn (whichever occurs first).

Licence - 6437

2

18

-

:beg/

ALL

'Bga'

16:21

2008

ģ

"Prt

¥

ŝ.

/Rev

α.

1119752

Licence - 6437

Department of Environment, Climate Change and Water NSW

Licence - 6437

HUNTER DEVELOPMENT CORPORATION

ABN 94 688 782 063

PO BOX 813

NEWCASTLE NSW 2300

Attention: Mr Bob Hawes

- Notice Number 1510956
- File Number «LicenceTrimNo»

Date 02-May-2013

VARIATION OF SURRENDER CONDITION

BACKGROUND

- A. HUNTER DEVELOPMENT CORPORATION ("the licensee") is the holder of Environment Protection Licence No. 6437 ("the licence") issued under the *Protection of the Environment Operations Act 1997* ("the Act"). The licence authorised the carrying out of activities at «LocationAddress» ("the premises").
- B. The licence was surrendered on **8 December 2010** by Surrender Notice number 1111840, subject to various conditions.
- C. The conditions are being varied because the licensee has advised that it cannot complete the capping works required by the completion date of **28 March 2013**.
- D. In a letter dated 4 February 2013, the licensee advised that it has been unable to meet the completion date referred to in paragraph B due to delays in the application to the Australian Government's Dept of Sustainability, Environment, Water, Populations and Communities relating to impacts on the threatened species, *Litorea aurea* (the Green and Golden Bell Frog).
- E. The licensee has also advised would be in breach of Australian Government legislation if capping works were to commence at the premises without a determination from the Australian Government's Dept of Sustainability, Environment, Water, Populations and Communities.

VARIATION OF SURRENDER CONDITION

- 1. By this notice the EPA varies the condition/s of the Approval of the Surrender of licence «LinkedLicenceNo» in the following ways:
 - Amends Condition 3 to read:

3(a) This surrender notice applies to the following land on Kooragang Island as defined by Lot and DP numbers:

Part Lot 7, Lot 10 and Lot 11 and Part Lot 14 of DP1119752,

and shown on the map titled '*Plan of Subdivision of Lot 122 DP874949, Lot 2 DP581473, Lot 6 DP1015754 and Lots 71 and 74 in DP1119950*' date of survey 2 November 2007, Surveyors Reference HW43.01.03.00 and registered on 29 November 2007, attached to Surrender Notice #1111840.

Note: Part Lot 14 DP1119752 refers to that area identified as Lot 14 DP1119752 excluding land labelled as '*Extra Land Area 2'*, *Extra Land Area 4*' and '*Extra Land Area 5*' shown on map titled '*Plan of Extra Land Showing Coordinates Kooragang*', dated 08/06/10, attached to Surrender Notice #1111840.

3(b) The land defined in Condition 3(a) is divided into three Areas being:

Area 1: Polygon ID3 and Polygon ID4 - Closure Works by HDC (K2 and K10 North);

Area 2: Polygon ID1 and Polygon ID2 - Closure Works by PWCS (North of Rail Line);

Area 3: Polygon ID 5 - Closure Works by PWCS (with Part Funding of State) (K10 South);

as defined by the coordinates attached to the maps titled 'Former Kooragang Island Waste Emplacement Facility Plan of Works - Western Section ' and 'Former Kooragang Island Waste Emplacement Facility Plan of Works - Eastern Section' both submitted to the EPA on 15 April 2013 and attached to this Variation of Surrender Condition Notice (#1510956).

• Amends Condition 4(a) to read:

By **30 June 2017**, the licensee shall complete implementation of the final landform and capping strategy as detailed in the documents titled:

Hunter Development Corporation - Report on KIWEF - Revised Final Landform and Capping Strategy - August 2009 - Revision 2, prepared by GHD, ("the Landform and Capping Strategy");

Green and Golden Bell Frog Management Plan – Kooragang Island Waste Emplacement Facility Closure Works' dated 19 April 2011 and prepared by Golder Associates;

*K26/32 and K24/31 Ponds Action Plan– Kooragang Island Waste Emplacement Facility*² dated 31 May 2011 and prepared by Golder Associates and

'*Materials Management Plan - Kooragang Island Waste Emplacement Facility*' dated November 2012 prepared by RCA Australia.

- Removes Condition 4(b) as the existing bentonite based geosynthetic clay liner installed over Pond 5 is consistent with the performance objectives of the agreed capping strategy as specified in the Landform and Capping Strategy referred to in Condition 4(a).
- Replaces Condition 4(b) with the following new condition.

4(b) The capping and closure works as defined in Condition 4(a) are to be carried out in a staged manner in accordance with the following timeframes:

Area 1: - Capping and Closure works to be completed by 31 December 2014

Area 2: - Capping and Closure works to be completed by 30 June 2017

Area 3: - Capping and Closure works to be completed by 30 June 2017

- **Removes Conditions 4(c)** as the Materials Management Plan has been updated in accordance with Condition 4(c). The updated Materials Management Plan is now referred to in Condition 4(a).
- Replaces Condition 4(c) with the following new condition.

4(c) Capping and Closure works, as defined in Condition 4(a), in Areas 2 and 3 may occur in synergy with the construction of the proposed Terminal 4 ('T4') project. If, by 28 February 2014, the T4 project does not obtain development consent necessary to commence construction of the T4 project, the licensee is required by this notice to complete Capping and Closure works in Areas 2 and 3, as defined in Condition 4(a).

• Replaces Condition 4(k) with the following new condition.

4(k) The licensee shall provide the EPA with a written statement of the results of the inspection required by condition 4(j) on an annual basis. The statement must describe the condition of the cap and any actions taken to remediate the cap as a result of the inspection. The first statement must be provided to the EPA by **30 June 2015 for Area 1** and **31 December 2017 for Areas 2 and 3**, with subsequent reports provided 12 monthly following the provision of the first report.

- **Removes Condition 5(a) and 5(b)** as these reports have been submitted to, and reviewed by the EPA. The reports required by these conditions are now referred to in Condition 4(a).
- Conditions 5(a) and 5(b) are to read 'Not Applicable'.
- Adds the following new condition at **Condition 5(f)**.

Condition 5(f) If any samples collected at the monitoring locations identified in Conditions 5(c) and 5(d) show an increase in pollutant concentration at the boundary of the lands to which this notice applies, Hunter Development Corporation must commence capping works within 2 months of receiving the data. Capping works are to commence, regardless of the progress of the T4 project, unless otherwise agreed in writing by the EPA.

• Apart from amendments as detailed in this Variation Notice, all other conditions are to remain as drafted on Surrender Notice #1111840 issued on 08 December 2010.

Rebecca Scrivener Acting Unit Head North - Hunter

(by Delegation)

INFORMATION ABOUT THIS NOTICE

• This notice is issued under section 81(3) of the Act.

Appeals against this decision

• You can appeal to the Land and Environment Court against this decision. The deadline for lodging the appeal is 21 days after you were given notice of this decision.

When this notice begins to operate

- The variations to the Approval of the Surrender of licence specified in this notice begin to operate immediately from the date of this notice, unless another date is specified in this notice.
- If an appeal is made against this decision to vary a condition of Approval of Surrender of licence and the Land and Environment Court directs that the decision is stayed the decision does not operate until the stay ceases to have effect or the Land and Environment Court confirms the decision or the appeal is withdrawn (whichever occurs first).

Reference No x Coordinate Y Goordinate 0 366338.145 1361891.103 1 366431.322 1361690.336 2 360461.322 1361690.336 3 366521.712 1561681.235 4 36662.088 1361662.023 5 36667.155 136177.1283 7 36667.603 1361252.926 9 36667.003 1361252.926 9 36667.003 1361224.369 12 36055.216 136137.042 11 36655.218 1361224.369 12 366471.057 1361224.369 12 366471.057 1361222.357 15 366471.07 1361220.252 14 366455.016 1361222.357 15 366471.007 1361223.556 16 366471.007 1361223.025 16 366455.016 1361224.907 18 366455.041 1361226.721 20 366471.027 1361223.023 21	Schedule of Coordinates		Polygon ID 1
0 36633.146 1361891.103 1 36843.1.846 1361880.268 2 366621.712 1361690.336 3 366521.712 1361680.336 4 366620.156 1301777.828 5 366620.156 1301777.828 7 35667.033 1361525.526 9 366560.034 1361625.826 9 366550.134 1361455.609 10 366552.216 136117.042 11 36647.733 1361220.252 13 366477.733 1361222.367 16 366477.733 1361222.367 16 366477.733 1361222.367 16 366477.733 1361222.367 16 366450.584 1361426.271 18 366450.584 1361422.357 19 360457.033 1361227.760 21 360447.574 1361224.071 20 368441.600 1361234.394 25 368423.809 1361224.271 26 <td< td=""><td>Reference No</td><td>X Coordinate</td><td>Y Goordinate</td></td<>	Reference No	X Coordinate	Y Goordinate
1 368434.846 13618480.336 2 360461.322 1361890.336 3 366521.7712 1361861.265 4 366652.288 1361862.623 5 366657.893 1361862.623 6 366657.893 1361525.525 7 36657.893 1361525.525 9 366550.334 136155.609 10 366555.216 136137.042 11 306540.325 1361220.252 13 36654.1853 1361220.252 13 366451.853 1361220.252 14 366451.167 1301221.215 15 366477.733 1361220.252 16 366451.616 1361224.925 17 366451.616 1361226.721 20 366451.607 1361226.721 20 366451.607 1361226.721 20 366451.607 1361226.721 20 366451.607 1361226.721 20 3664451.607 1361226.721 21	0	368383.145	1361891.183
2 368461.322 1381890.336 3 366521.712 1361869.241 5 366836.286 1361862.623 6 36687.675 1361777.128 7 36667.675 1361777.128 7 36667.603 1361325.526 9 366557.803 1361325.526 9 366557.803 1361324.24.89 10 366555.216 136137.042 11 306545.216 136137.042 12 360513.853 1361224.389 12 360513.853 1361224.389 14 36643.616 1301221.215 15 366477.733 1361222.367 16 366471.007 1361223.526 17 3686455.644 1361224.721 20 368455.647 1361226.721 20 368447.026 1361226.721 21 368447.026 1361227.620 22 368447.026 1361226.243 23 366423.807 1361224.394 25 <t< td=""><td>1</td><td>368434.849</td><td>1361888.268</td></t<>	1	368434.849	1361888.268
3 366621.712 1361861.236 4 366681.276 1361862.241 5 3666820.156 1301777.828 7 356617.675 1361743.910 8 366657.893 1361525.926 9 366567.893 1361525.926 9 366565.216 136137.042 11 366540.325 1361220.252 13 366471.057 1361220.252 14 366471.057 1361220.252 15 366471.067 1361222.2567 16 366471.067 1361224.907 18 366455.5164 1361226.721 20 368455.544 1361226.721 20 368455.544 1361226.721 20 368447.574 1361228.023 22 368447.574 1361228.023 23 368455.647 1361224.907 24 366429.716 1361240.244 25 366447.526 1361230.823 23 368447.526 1361230.424 24	2	368461.322	1361690.336
4 366691,275 1361862,623 5 366695,286 1361777,128 7 36667,693 1361525,525 9 366560,034 1361525,525 9 366560,034 1361455,669 10 366552,216 1361317,042 11 366540,325 1361220,252 13 366540,325 1361220,252 14 366440,325 1361220,252 13 366440,325 1361220,252 14 366443,615 1301221,215 15 368477,733 1351222,367 16 366471,007 1361224,807 18 366450,584 1361224,407 18 366451,516 1361224,407 18 366451,516 1361224,207 20 3684451,584 1361224,207 21 3684455,647 1361224,207 22 3684455,647 1361224,207 23 368455,647 1361224,207 24 366423,819 1361224,207 25 366447,126 1361224,074 26 366447,126	3	368521.712	1361881.236
5 36635,288 1361962,623 6 36867,03 136177,028 7 36867,03 136175,09 9 368657,03 136175,09 10 36655,216 138137,02 11 30655,216 138137,02 12 36951,3850 1361220,252 13 368448,277 1361220,252 14 366455,616 1361222,387 15 368477,733 1361222,387 16 368471,007 1361223,596 17 368455,616 1361224,397 18 368455,647 1361224,397 18 368455,647 1361224,394 22 368441,600 1361227,760 23 368435,647 1361226,224 24 368429,716 1361224,394 25 368447,926 1361224,394 26 368417,926 1361224,026 26 368417,926 1361224,272 27 368423,868 1361240,174 28 368408,8	4	366681.276	1361869.241
6 366620,156 1361777,B28 7 368517,675 1361743,910 8 36655,034 1361525,926 9 368655,215 1381317,042 11 36655,215 1381317,042 12 36853,053 1361220,252 13 368489,277 1361221,215 15 36847,733 1361222,367 16 36847,733 1361222,367 16 36847,1007 1361223,598 17 368465,516 1301224,907 18 368450,584 1361226,721 20 368451,589 1361226,721 20 368447,673 1361228,303 22 368441,600 1361229,923 23 468435,5847 1361220,923 24 368429,716 1361224,394 25 368447,926 1361224,494 26 368447,926 1361224,494 28 368408,228 1361242,429 29 368408,228 1361244,406 30	5	366636.288	1361862.623
7 368617.675 1301743010 8 368657.903 $1301525,926$ 9 368650.034 1061455.609 10 368655.218 1301147.042 11 360540.325 1361220.252 13 964848.77 1361220.252 14 968483.815 1301221.215 15 368477.733 1361222.367 16 366477.007 1361224.907 18 368455.516 1301224.907 18 368455.564 1361224.907 18 368455.564 1361224.907 18 368455.5647 1361224.907 18 368455.5647 1361224.907 18 368455.5647 1361224.907 18 368455.647 1361224.907 20 368447.674 1361224.907 21 368425.847 1361224.92760 22 368417.026 1361224.394 25 368425.847 1361226.245 26 368417.026 1361240.174 27 368425.847	6	368623,155	1361777.828
8 368667.893 1361525.926 9 368550.034 1361455.609 10 366555.216 136137.042 11 366450.325 1361220.252 13 968449.777 1361220.252 14 366458.815 1361221.215 15 368477.733 1361223.967 16 368477.1007 1961223.596 17 366465.616 1361224.907 18 368455.644 1361227.710 21 368455.647 1361228.303 22 368441.600 1361228.303 23 368435.647 1361234.394 25 368441.600 1361234.394 25 368447.026 1361240.174 26 368417.026 1361240.174 28 368408.218 1361242.446 30 366394.858 1361242.629 29 368408.218 1361240.174 28 368408.218 1361240.174 31 300300 366394.858 1361242.629 <t< td=""><td>7</td><td>368617.675</td><td>1361743 510</td></t<>	7	368617.675	1361743 510
9 368650.034 1061455.609 10 368655.216 1381317.042 11 366540.325 1361220.252 13 368489.777 1361220.252 14 66643.815 1301221.215 15 368477.733 1361222.367 16 368477.037 1361223.595 17 368465.816 1361226.721 18 368453.589 1361227.760 21 368447.674 1361232.620 22 368441.600 1361232.620 23 368435.647 1361232.620 24 368429.716 1361230.923 23 368435.647 1361230.923 24 368429.716 1361230.434 25 368447.026 1361240.174 28 368405.208 1361240.174 28 368408.208 1361240.174 28 368408.208 1361240.634 31 308040.812 1361240.634 32 368360.164 1361258.763 34	8	368667.883	1361525,926
10 368655.216 1361317.042 11 360540.325 1361220.252 12 360513.053 1361220.252 13 968449.277 1361220.252 14 366843.015 1301221.215 15 368471.007 1361223.595 16 366451.616 1361224.2467 18 366450.584 1361226.721 20 368453.569 1361227.60 21 368455.647 1361228.303 22 368441.600 1361228.620 21 368455.647 1361228.2620 23 368441.600 1361230.823 24 368429.716 1361240.174 25 368423.809 1061240.245 26 368417.026 1361244.394 25 368429.716 1361240.174 28 3669408.238 1361242.623 29 368408.238 1361244.068 30 363394.858 1361244.850 32 360330.674 1361255.267 35 <td>9</td> <td>368550.034</td> <td>1361455.609</td>	9	368550.034	1361455.609
11 360540.325 1361220.262 13 360543.850 1361220.262 14 66643.615 1301221.215 15 368477.733 1361222.367 16 $36647.1.07$ 1361223.526 17 368465.516 1361224.807 18 366455.516 1361224.207 20 366457.033 $1.061223.252$ 19 360457.033 $1.061229.303$ 22 368447.574 1361229.303 22 368447.574 1361229.303 23 368435.847 1361232.620 24 36829.716 1361234.394 25 368447.826 1361240.174 26 36447.826 1361240.174 27 368412.069 1361240.174 28 366408.238 1361242.52 29 366408.238 1361246.634 31 360304.856 1361246.834 31 360304.856 1361246.834 32 368355.104 1361253.763 34 368368.240 361257.523 35 368368.240 361257.5247 35 368368.240 361267.5247 35 368368.240 361267.5247 36 36330.674 1361267.5247 35 368368.240 361267.5247 36 36330.674 1361267.5247 36 36330.674 1361267.5960 36 36330.674 1361267.5960 42 56837.876 1361278.969 36 36330.671 1361267.5960 42 56837	10	368655.216	1361317.042
12 3605 (3.85) 1361220 252 13 968489.777 1361220 252 14 36643.815 1301221 215 15 368477.733 1361223 595 16 366471.067 1361223 595 17 368655.864 1361224.807 18 366450.584 1361227.760 20 968453.589 1361227.760 21 368447.574 1361228.303 22 368441.600 1361234.324 23 368447.574 1361228.203 24 368429.716 1361234.324 25 368423.809 1361240.474 26 368447.626 1361240.174 28 366400.238 1361240.174 28 366400.434 1361246.634 30 366394.856 1361244.6634 31 360300.064 1361255.763 32 366300.064 1361255.763 33 368362.104 1361264.634 31 360300.064 1361255.23763 34<	11	366540.325	1361224,389
13 968489.777 1361220.252 14 968433.615 1361221.215 15 368477.733 1361222.367 16 366451.61 1361224.407 18 366455.516 1361226.225 19 360457.033 1161226.721 20 368453.569 1361227.760 21 368445.647 1361223.620 22 368441.600 1361232.620 23 368435.647 1361232.620 24 368423.803 1361240.174 25 368423.803 1361240.434 25 368412.069 1361240.174 26 368412.069 1361240.174 28 368408.238 1361244.406 30 366394.856 1361244.406 31 3060304.656 1361244.406 32 368362.40 1361251.313 33 368362.40 1361262.87 35 363855.104 1361261.552 37 363355.104 1361226.988 368340.58	12	368513.853	1361220.252
14 966483.815 1301221215 15 368477.733 1351222.367 16 366471.067 1361223.596 17 $366465.B16$ 1361223.596 18 366450.564 1361226.721 20 360457.633 1361226.721 21 366447.574 1301229.303 22 366447.574 1301229.303 23 366423.5647 1361230.623 23 366423.809 1361224.394 25 366423.809 1361234.394 26 36647.226 1361234.394 27 366402.238 1361242.252 28 366403.238 1361242.252 29 366400.434 1361246.634 30 366394.858 1361246.634 31 3060394.856 1361246.634 33 368371.869 1361255.763 34 368361.164 1361255.763 34 368355.104 1361258.883 36 368365.104 1361258.883 36 368365.104 1361275.966 42 368355.104 1361275.966 42 368327.808 136127.059 43 368322.586 136127.059 44 306317.306 1361275.966 45 368322.586 136127.9059 46 36830.671 1361225.511 47 368321.2068 136127.9059 48 36830.671 1361225.511 49 36830.671 1361225.561 41 36830.671 1361225.561 42 368327	13	368489.277	1361220,252
15 368477.733 1361222.367 16 366471.077 1361223.596 17 368465.516 1361224.907 18 366450.564 1361726.295 19 360457.033 $1.761226.721$ 20 368453.569 1361227.760 21 36847.574 1361222.303 22 368441.600 1361223.023 23 968435.647 1361223.620 24 368429.716 1361234.394 25 368423.809 1001236.245 26 366470.226 1361240.174 27 366412.006 1361240.174 28 366408.238 1361242.252 29 366408.218 1361242.6634 31 366394.858 1361246.634 31 366394.858 1361246.634 31 366394.858 1361246.287 35 368368.240 1361253.763 34 368371.859 1361256.287 35 368368.240 1361267.105 39 366340.589 1361271.055 36 36330.664 1361267.105 39 368325.104 1361272.942 41 368331.270 1361275.960 42 368327.808 1361272.942 43 368322.586 1361287.929 44 306317.306 1361227.942 45 368312.068 1361287.929 46 36829.656 1361287.929 47 366322.586 1361287.929 48 366322.586 1361287.929 49 36	14	368483.815	1301221 215
16 366471.067 1061223.596 17 366465.016 1361224.907 18 366450.504 1061224.907 19 360457.033 1051226.721 20 360453.569 1361227.760 21 366447.574 1301229.033 22 368441.600 1361230.923 23 368423.809 1061226.260 24 368429.716 1361234.394 25 368423.809 1061236.245 26 368417.026 1961230.172 27 366412.069 1561240.174 28 368408.238 1361242.626 29 366408.238 1361242.6134 30 366394.858 1361244.068 30 366394.858 1361244.068 30 366394.858 1361244.068 31 366394.858 136126.634 31 366394.858 1361242.870 32 366394.859 1361253.763 34 366371.869 1361255.287 35 368365.104 1361264.293 36 368390.664 1361267.059 38 368340.589 1361267.059 39 366340.589 1361272.942 41 368322.586 136127.059 42 368322.586 136127.059 43 368322.586 136127.059 44 306317.305 136126.752 46 368301.722 1361227.9560 47 368322.586 1361287.552 48 368	15	368477.733	1361222.367
17 368465.516 $1961/24.907$ 18 366455.564 $1361/26.295$ 19 360457.033 $1.051/26.721$ 20 368453.569 1361227.760 21 368447.574 1361223.033 22 368441.600 1361230.923 23 368423.867 1361234.394 25 368423.809 1001206.245 26 36847.926 1361234.394 25 368423.809 1001206.245 26 36847.926 1361244.074 28 368408.238 1361242.252 29 366408.238 1361242.252 29 366408.238 1361244.6634 31 366394.858 1361246.634 31 366394.858 1361248.830 32 366334.559 1361253.763 34 366371.859 1361258.883 36 368360.064 1361258.883 36 368360.5104 1361258.883 36 368365.104 1361258.883 36 368365.104 1361258.883 36 368365.104 1361258.883 36 368327.908 136127.909 38 368327.908 136127.909 41 368327.908 136127.909 42 36832.5266 136127.909 43 36832.506 136127.909 44 306317.306 136128.453 45 368312.008 136127.909 45 36832.565 1361327.905 46 36327.65	16	366471.007	1361223.596
18 368450.584 1361726.295 19 360457.833 1051226.721 20 368447.574 1361227.760 21 368447.574 1361229.303 22 368441.600 1361230.823 23 368455.647 1361232.620 24 368429.716 1361234.394 25 368423.803 1061236.245 26 368417.926 1361240.174 28 368408.238 1361242.406 30 366394.858 1361244.406 30 366394.858 1361244.6634 31 360308.912 1961248.830 32 360408.3196 1361251.313 33 366371.859 1361251.513 34 366371.859 1361265.287 35 368362.40 1361261.552 37 368355.104 1361261.552 37 368355.104 1361261.552 37 368355.104 1361261.552 37 368352.868 1361275.960 42 <td>17</td> <td>368465.816</td> <td>1361224.907</td>	17	368465.816	1361224.907
19 360457.033 1361226.721 20 360457.033 1361227.760 21 360447.574 1361228.303 22 368441.600 1361230.923 23 968435.647 1361234.394 25 368423.809 1001236.245 26 368423.809 1001236.245 27 366412.069 1361242.620 28 368408.238 1361242.252 29 366408.238 1361242.620 29 366408.238 1361242.626 29 366408.394 1561244.074 30 366394.856 1361246.634 31 366394.856 1361246.634 31 366369.4856 1361251.313 32 366360.654 1361251.313 33 366371.869 1361256.287 35 368366.240 1361256.287 35 368360.654 1061256.287 36 368360.654 1061256.287 37 368355.104 1361261.552 37 368355.104 1361264.293 38 368340.589 1361267.105 39 360344.111 1361264.293 38 368322.596 1361275.650 42 36832.596 136129.551 44 308317.306 136129.551 45 36832.596 136129.051 46 36429.656 136129.051 47 36829.572 136130.646 48 36829.575 136130.694 49 306321.556 136130.694 41 368321.656 <	18	366459,584	1361226.295
20 368453.569 1361227.760 21 368447.574 1361228.303 22 368441.600 1361230.923 23 368435.647 1361232.620 24 368429.716 1361234.394 25 368423.809 1061236.245 26 368477.926 1361234.394 26 368477.926 1361234.377 27 366412.006 1361240.174 28 366408.238 1361242.252 29 366400.434 1061244.406 30 366394.858 1361242.252 29 366400.434 1061244.406 31 360300.912 1361251.313 32 3663371.859 1361255.287 35 368368.240 1361251.552 37 368355.104 1361261.552 37 368355.104 1361261.652 38 368340.589 1361275.966 40 368331.270 1361275.966 42 368327.908 1361275.966 42 368327.908 1361275.966 42 368327.908 1361275.966 42 363317.306 1361285.453 44 306317.306 1361285.453 45 369312.068 1361292.551 48 369296.616 1361290.051 49 369296.542 136130.6246 51 362821.656 136130.941 52 368285.542 136130.941 53 368296.542 136130.941 42 36	19	360457,033	1361226.721
21 368447.574 1301229.303 22 368441.600 1361230.823 23 368435.647 1361232.620 24 368429.716 1361234.394 25 368423.809 1361234.394 26 36847.026 1361234.172 27 366412.069 1361240.174 28 369408.238 1361942.252 29 366400.434 1361244.406 30 366394.656 1361246.634 31 360304.656 1361248.836 32 360331.966 1361251.313 33 366371.679 1361253.763 34 368350.654 1361255.287 35 368368.240 1361256.287 35 368369.1654 1361267.552 37 368355.104 1361267.552 37 368355.104 1361267.552 37 368355.104 1361267.588 40 368330.671 1361209.586 41 368332.200 1361275.960 42 368327.908 1361275.960 42 368327.908 1361282.118 43 366322.586 136128.551 44 363317.306 136128.551 45 363317.306 136128.551 46 36330.671 136128.551 46 363317.306 136128.5551 46 363317.506 136128.5551 46 363317.506 136128.5551 46 363326.656 136128.5551 47 36632	20	368453,569	1361227.760
22 $368441,600$ $1361230,823$ 23 $368435,647$ $1361232,620$ 24 $368429,716$ $1361234,394$ 25 $368423,809$ $1061236,245$ 26 $368417,026$ $1361240,174$ 28 $366408,238$ $1361242,252$ 29 $366408,238$ $1361242,252$ 29 $366408,238$ $1361242,252$ 29 $366408,238$ $1361242,252$ 29 $366408,238$ $1361242,6634$ 31 $360394,858$ $1361244,466$ 30 $366394,858$ $1361245,830$ 32 $368341,166$ $1361253,763$ 34 $368371,859$ $1361255,287$ 35 $368362,200$ $1361255,287$ 35 $368362,200$ $1361256,287$ 35 $368360,0.64$ $1361256,287$ 36 $36330,0.64$ $1361256,287$ 37 $368355,104$ $1361256,287$ 38 $368340,589$ $1361261,552$ 37 $368355,104$ $1361261,552$ 37 $368352,7808$ $1361267,105$ 39 $368322,586$ $136128,2942$ 41 $368322,2868$ $136128,2942$ 42 $56332,2868$ $136128,453$ 45 $368322,586$ $136128,453$ 45 $368322,586$ $136128,453$ 45 $368322,586$ $136128,453$ 45 $368322,586$ $136128,453$ 45 $368322,586$ $136128,453$ 45 $368322,586$ $136128,453$ 45 368	21	368447.574	1301229.303
23 $368435, 647$ $1361232, 620$ 24 $368429, 716$ $1361234, 394$ 25 $368423, 809$ $1361236, 245$ 26 $368417, 926$ $1361240, 174$ 27 $366412, 006$ $1361242, 652$ 29 $366400, 434$ $1361244, 406$ 30 $366394, 656$ $1361246, 654$ 31 $360300, 812$ $1361244, 406$ 32 $366394, 656$ $1361246, 654$ 33 $3663371, 859$ $1361253, 763$ 34 $368361, 146$ $1361253, 763$ 35 $368360, 664$ $1361258, 287$ 36 $368360, 664$ $1361256, 287$ 35 $368360, 664$ $1361264, 293$ 36 $368360, 664$ $1361264, 293$ 38 $368340, 589$ $1361267, 106$ 39 $368344, 111$ $1361264, 293$ 38 $368330, 671$ $1361275, 966$ 40 $36330, 671$ $1361275, 966$ 42 $568351, 104$ $1361275, 966$ 43 $368322, 586$ $136127, 959$ 44 $363312, 206$ $1361285, 453$ 45 $368322, 586$ $136128, 453$ 46 $368322, 586$ $1361285, 453$ 47 $368322, 586$ $1361285, 453$ 48 $368326, 616$ $1361290, 051$ 49 $368326, 616$ $1361290, 051$ 49 $368296, 616$ $1361290, 051$ 40 $368296, 616$ $1361290, 051$ 41 $368296, 656$ $1361302, 616$ 50 $368296, 656$ $1361302, 616$ 51 3629	22	368441.600	1361230.823
24 368429.716 1361234.394 25 368423.809 1061236.245 29 368417.026 1361239.172 27 366412.009 1361244.074 28 369400.238 1361242.074 29 368400.434 1061244.406 30 366394.856 1361246.634 31 360304.0434 1061244.406 32 366394.856 1361246.634 31 360304.0422 1361246.836 32 366334.156 1361251.313 33 368371.859 1361258.287 35 368366.240 1361256.287 35 368360.664 1361264.293 36 368360.664 1361264.293 38 368360.589 1361264.293 38 36830.571 1361264.293 38 368340.589 1361264.293 38 368330.571 1361264.293 38 368330.571 1361267.106 39 368327.806 1361275.960 42 568327.806 1361285.453 44 36337.270 1361285.453 45 368322.5986 1361285.453 45 368322.5986 1361285.453 46 368321.2068 1361285.453 45 368321.2068 1361285.453 46 368296.616 1361299.061 47 368326.562 136130.2616 49 368296.616 1361299.061 49 368296.642 136130.6246 50 <	23	368435.647	1361232.620
25 368423.809 1061236.245 26 368417.926 1361239.172 27 368412.069 1361240.174 28 368408.238 1361242.252 29 368400.434 1361244.668 30 366394.858 1361246.634 31 366394.858 1361248.856 32 368341.96 1361248.856 33 368371.859 1361251.313 33 368371.859 1361256.287 35 368365.240 1361256.287 35 368365.104 1361264.293 38 36830.654 1361264.293 38 368340.589 1361267.105 39 308344.111 1361267.2942 41 368333.270 1361275.966 42 368322.586 1361279.059 43 368322.586 1361284.53 45 368312.008 1361285.453 45 368301.722 1361285.453 45 368301.722 1361285.453 45 368301.722 1361285.752 46 368301.722 1361285.453 47 368321.208 1361285.453 48 368296.616 1301290.061 49 368296.616 1301290.061 49 368291.555 1361302.616 50 368286.542 1361302.466 51 368276.656 1361313.700 53 368276.656 1361321.406	24	368429,716	1361234.394
26 368447.925 1961239.172 27 368412.069 1361240.174 28 366406.238 1361242.252 29 366401.434 1161244.466 30 366394.558 1361246.634 31 360390.912 1361248.830 32 366331.966 1361251.313 33 366371.859 1361256.287 35 368360.664 1361256.287 35 368360.664 1361264.293 36 368360.664 1361264.293 36 368360.664 1361267.405 39 368340.1689 1361267.405 39 368340.589 1361267.405 39 368340.589 1361267.405 42 368327.808 1361275.966 42 368322.586 1361285.453 45 368322.586 1361285.453 45 368327.908 1361285.453 45 368327.808 1361285.551 46 36830.673 1361285.453 45 368321.673 1361285.551 46 36830.673 1361285.551 48 368296.616 1301290.051 49 368296.542 1361306.246 50 368286.542 1361306.246 51 36226.555 1361306.246 52 368286.542 1361306.941 52 368266.542 1361306.941 52 368266.542 1361306.941 53 368266.542 1361306.941 54 36	25	368423,809	1381236.245
27 368412.069 1361240.174 28 369408.228 1361242.252 29 368400.434 1361244.468 30 368394.856 1361246.834 31 360360.912 1361248.830 32 369383.196 1361251.313 33 366371.859 1361253.763 34 368360.654 1361256.287 35 368360.654 1361267.522 37 368355.104 1361267.522 37 368355.104 1361267.522 38 368340.589 1361267.552 37 368355.104 1361267.562 39 368340.589 1361267.552 37 368352.504 1361267.552 41 368333.270 1361267.5966 42 368327.908 1361275.966 42 368327.908 1361287.5966 43 366322.586 1361287.5966 44 368317.306 1361282.551 45 366301.722 1361287.552 46 368306.873 1361282.551 47 366321.656 136129.061 49 368296.616 1361290.061 49 368296.542 1391002.616 50 368286.542 1391002.616 50 368286.542 1391306.246 51 36276.658 1361321.406	28	368417.026	1361238.172
28 368408.238 1361242.252 29 368400.434 1361244.406 30 366394.856 1361246.634 31 366394.856 1361248.836 32 36030.812 1361251.763 33 368371.859 1361255.287 35 368368.240 1361258.883 36 36830.654 1361258.883 36 368360.654 1361261.552 37 368355.104 1361267.652 38 368340.589 1361267.966 40 36834.520 1361267.966 41 368332.200 1361272.942 41 368332.2586 1361272.942 43 368322.586 136128.752 44 368317.306 136128.752 45 368301.722 136128.752 46 368301.722 136128.752 47 368326.542 136128.752 48 368301.722 136128.752 49 368296.616 1361292.116 41 368296.616 1361290.061 42 368296.542 1361290.061 43 368296.542 1361290.061 44 368301.722 1361292.061 45 368296.616 1361290.061 46 368296.616 1361290.061 47 368296.542 1381300.941 48 368296.656 1361306.246 51 36826.542 1381313.700 53 36826.542 138131.700 54 368276.658 1381321.406	97	368412.009	1361240.174
29 368400.434 1361244.406 30 366394.558 1361246.634 31 360300.812 1361248.830 32 3663371.859 1361253.763 34 368371.859 1361255.287 35 368362.400 1361255.287 35 368365.240 1361256.287 36 368355.104 1361261.552 37 368355.104 1361267.105 39 368344.111 136127.9986 40 368330.671 136127.9966 41 368333.270 136127.5966 42 36832.586 136127.5966 43 36832.586 136127.5966 44 368312.006 1361285.453 45 368312.006 1361285.453 45 368312.066 1361285.453 45 36832.586 1361285.453 45 368312.066 1361285.453 45 36832.566 1361285.453 45 368301.722 1361225.551 48 368296.616 1301290.051 49 368296.616 1301290.051 49 368296.616 136102.616 50 368286.542 1391300.246 51 36276.650 1361313.700 52 368276.650 136131.700 53 368271.787 1361321.406	28	368408.238	1361242.252
30 368394.858 1361246.634 31 360360.912 1361248.830 32 3603671.859 1361251.313 33 366371.859 1361253.763 34 368371.859 1361258.287 35 368362.400 1361258.287 36 368360.664 1361258.287 36 368360.664 1361256.287 37 368355.104 1361254.283 38 368340.589 1361261.552 37 368355.104 1361261.552 38 368340.589 1361267.105 39 363344.111 1361272.942 41 368332.270 1361275.866 42 368322.898 1361275.969 43 368322.586 1361287.292 44 308317.306 1361285.453 45 368322.696 1361285.453 45 368322.696 1361285.453 45 368322.696 1361285.453 45 368321.069 1361285.453 45 368321.665 1361290.051 48 368296.616 1301290.051 49 368296.616 136102.616 50 368286.542 1391300.246 51 36226.555 1361302.946 51 36226.656 1361302.616 52 36326.656 1361302.616 53 36826.542 1391300.246 51 36226.565 1361302.946 52 368276.656 1361321.406	29	368400.434	1361244.406
31 368360.812 1361248.836 32 3603374.96 1361251.313 33 368377.512 1361253.763 34 368371.859 1361255.287 35 368360.664 1361258.287 36 36330.664 1361254.287 37 363355.104 1361264.293 38 368340.589 1361267.106 39 368344.111 1361264.293 38 368340.589 136127.942 41 368332.571 136127.942 41 368332.576 136127.942 41 368322.586 $136128.287.2942$ 41 368322.586 $136128.287.2942$ 44 363312.066 136128.453 45 368312.066 136128.5453 45 368312.066 136128.553 46 368301.722 1361225.551 48 368296.616 136129.061 49 368291.556 136102.616 50 368286.542 1391306.246 51 36226.565 1361302.466 51 36226.655 1361302.466 52 368276.655 1361304.941 52 368276.655 1361313.700 53 368276.656 1361321.406	30	368394,858	1361246.634
32 368333.196 1361251.313 33 368371.859 1361253.763 34 368371.859 1361256.287 35 368368.240 1361256.287 35 368368.240 1361256.287 37 363365.104 1361264.293 38 368340.589 1361264.293 38 368340.589 1361267.105 39 368344.111 1361267.942 40 368330.671 1361275.966 42 368327.806 1361275.966 42 368322.586 1361285.453 43 368322.586 1361285.453 44 306317.306 1361285.453 45 368312.068 1361285.453 45 368312.6653 1361285.453 45 368321.556 1361285.453 46 368296.616 1361229.061 47 3683296.616 1361290.061 49 368296.542 13941306.246	31	3683990.812	1361248.830
33 368377.512 1361253.763 34 368371.859 1361258.287 35 368366.240 1361258.287 35 368366.240 1361258.283 36 368360.654 1361264.293 37 368355.104 1361267.105 38 368340.589 1361267.105 39 368344.111 1361269.886 40 368330.671 1361272.842 41 368333.270 1361275.966 42 368327.808 1361285.453 43 368322.586 1361285.453 45 368312.008 1361285.453 45 368312.008 1361285.453 45 368312.008 1361285.453 46 368306.873 1361282.116 47 3663296.616 1361292.051 48 368296.616 1361292.051 49 368296.616 1361292.051 49 368296.616 1361290.051 49 368296.642 13941306.246 50 </td <td>32</td> <td>368383,196</td> <td>1361251.313</td>	32	368383,196	1361251.313
34 368371.859 1361256.287 35 368366.240 1361256.287 35 368366.240 1361256.283 36 368360.654 1361261.552 37 368355.104 1361267.105 38 368340.589 1361267.105 39 368344.111 1361272.542 40 368330.671 1361272.542 41 368333.270 1361275.966 42 368322.596 1361282.292 43 368322.596 1361282.292 44 368317.306 1361282.551 45 36321.673 1361282.551 46 36330.673 1361282.551 47 3663296.616 1361290.051 49 368296.542 136102.616 50 368286.542 136100.2616 50 368286.542 1361306.941 51 36276.658 1361307.522 54 168276.658 1361313.700	33	368377.512	1361253.763
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	368371.859	1961256.287
36 368360.664 1361261.552 37 368355.104 1361264.293 38 368340.589 1361267.105 39 368344.111 1361269.886 40 368330.671 1361275.942 41 368333.270 1361275.966 42 368327.908 1361275.966 43 368322.586 1361287.2922 44 308317.306 1361287.453 45 368312.068 1361287.2922 46 368306.873 1361287.551 47 368301.722 1361290.051 48 368296.616 1351290.051 49 368291.556 1361302.616 50 368281.575 1361309.941 52 368276.656 136130.941 53 368271.787 136131.700 53 368276.656 1361321.406	35	368368,240	1361258.883
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	368360.654	1361261,552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	368355.104	1361264,293
39 368344.111 1361209.888 40 368330.671 1361272.942 41 368333.270 1361275.966 42 368327.808 1361275.966 43 368322.586 1361287.909 44 368312.066 1361285.453 45 368312.066 1361285.453 46 368312.066 1361282.116 47 368301.722 1361282.116 48 3683296.616 1361290.051 49 368296.616 1361290.051 49 368291.555 1361302.616 50 368286.542 1391306.246 51 368286.542 1391306.246 52 368276.655 1361309.941 52 368276.655 1361313.700 53 368271.787 1361321.406	38	368340,589	1361267.105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	368344.111	1361209,988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	368338.671	1361272.942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	368333.270	1361275.966
43 368322,586 1361282,299 44 308317,306 1361285,453 45 368312,068 1361285,453 46 368306,873 1361282,118 47 366301,722 1361285,551 48 368296,816 1361299,051 49 368296,816 1361299,051 49 368291,556 1361302,646 50 368286,542 1391306,246 51 363286,542 1361309,941 52 063276,655 1361313,700 53 368271,797 1361317,752 54 1669265,957 1351321,406	42	368327,808	1361279.059
44 368317,306 1361285,453 45 368312,068 1361285,453 46 368306,873 1361282,118 47 366301,722 1361285,551 48 3663296,816 1361299,051 49 3663291,556 1361302,616 50 368280,542 1301302,616 51 363286,542 1361309,941 52 363276,655 1361309,941 53 368276,655 1361313,700 53 368265,957 1351313,700 54 168286,957 1351321,406	43	368322,586	1361282.222
45 368312,068 1361286,752 48 368306,873 1361292,118 47 368301,722 1361295,551 48 366296,616 1351259,051 49 366291,556 1361302,616 50 368281,555 1361302,616 51 368281,575 1361309,941 52 368276,650 1361313,700 53 368271,787 1361317,522 54 168266,567 1351321,406	44	368317.306	1361285,453
46 363306.873 1361292.118 47 368301.722 1301295.551 48 368296.616 1351259.051 49 368291.556 1361302.616 50 368286.542 1391308.246 51 363276.555 1361309.941 52 368276.655 1361313.700 53 368271.787 1361317.522 54 168265.967 1351321.406	45	368312.068	1361286.752
47 368301.722 1361295.551 48 368296.616 1361299.051 49 368291.556 1361302.616 50 368286.542 1391306.246 51 368286.542 1391306.246 52 368276.655 1361309.941 53 368276.655 1361313.700 54 168266.967 1381321.406	46	368306.873	1361292.118
48 368296.616 1361299.061 49 368291.556 1361002.616 50 368286.542 1391308.246 51 368281.675 1361309.941 52 368276.655 1361313.700 53 998271.787 1361317.522 54 368266.967 1361321.406	47	368301.722	1361295.551
45 368291.556 1361002.616 50 368286.542 139100.246 51 368291.575 1361309.941 52 368276.655 1381313.700 53 998271.787 1361317.522 54 368266.967 1381321.406	48	368296,616	1361259.051
50 368286.542 1081008.246 51 368281.575 1361309.941 52 368276.655 1351313.700 53 988271.787 1361317.522 54 368286.967 1381321.406	49	368291.556	1361302.616
51 368281.675 1361309.941 52 368276.655 1361313.700 53 968271.787 1361317.522 54 368286.967 1361321.406	50	368286.542	1381908.246
52 065276.655 1381313.700 53 995271.787 1361317.522 54 068285.967 1361321.406	51	368281.675	1361309.941
53 998271787 1361317.522 54 968285.967 1351321.406	52	365276.655	1391313.700
54 368265.967 1351321.406	53	365271,787	1361317.622
	54	368266.967	1351321.406

Ref KIWEI- Pian of Works

Statister"

Page 1 of 9

Variation to N1111840

Ref KIWEF Plen of Works

Schedule of Ccordin	lates	Palygon ID 1
Reference No	X Coordinate	Y Coordinate
55	368262 196	1361325.353
56	368257.480	1361329.380
57	368252.815	1361333,429
58	368248 202	1361337.557
59	368243.643	1361341.745
60	366239.139	1361345,991
61	358234.690	1361350.295
62	358230.296	1361354,656
63	368225.060	1361369.074
64	368221.681	1361363,547
fifi	368217.400	1361368.075
BI	36B213.29B	1301372,650
67	358209.196	1361377.293
88	368205,154	1361381,982
89	368201.173	1361386.722
70	368197.253	1361391.513
71	368193.396	1361396.355
12	368189.601	1361401.240
/3	368025.503	1361815.613
74	368045.863	1361682.838
75	368066,717	1361657.048
78	366072.921	1361657.461
77	369083.878	1361662.693
78	360137.034	1361717.438
79	368172.607	1361734,810
80	368187.084	1361738.533
81	368196.597	1361755.492
82	368206.525	1361777.414
83	368213.970	1361792.719
84	365216.452	1361812.987
85	368222.656	1361823.328
86	368231.756	1361831.600
87	368240.856	1361852.623
89	368256.988	1361882.063
89	365284.287	1361898.022
93	366329.373	1361897,781

Part Martingan

Page 2 of 9

Variation to N1111840

Schedule of Goordin	ales	Polygon ID 2
Reference No	X Coordinate	Y Coordinate
0	368244.518	1301272.018
1	368249.694	1301268.855
2	368251.260	1361267.686
3	368230.515	1361272.370
4	368218.106	1361268.647
5	368166.809	1361291.397
6	368087.399	1361315.388
7	368013.358	1361353.028
B	367885.954	1301306.678
9	367869.100	1301370.260
10	367959.173	1361382.395
11	367957.932	1361392.737
12	367963.309	1361434.100
13	357969.100	1301491,595
14	357993.918	1361545.781
15	358001.181	1361561.838
16	368148.311	1361309,638
17	368152.304	1361384.487
18	368156.361	1361369,385
19	368160.479	1361354,334
20	368164.660	1361349.333
21	368168.901	1061344.385
22	288173 203	1361339,488
73	358177.584	1361334.645
24	368181.985	1361329.856
25	368188.464	1361325.121
20	388191.001	1361320,442
27	368195.595	1361315.819
20	368200.246	1361311.252
29	368201.852	1361306.743
30	368209,713	1361302,292
31	368214.528	1361297.900
32	368219.307	1361293,567
33	366224,319	1361289.205
34	386229.293	1361285,083
36	368234.318	1361280.932
36	368239.394	1361276.044

Ref KIWEF Plan of Works

Variation to N11*1840

Schedule of Coordinat	les	Polygon ID 3
Reference No	X Coordinate	Y Coordinate
0	367327,607	1361409.027
1	367339.093	1361420.906
2	367351.097	1361432.131
3	367357.021	1361439.778
4	367379.838	1361460.555
5	367387.839	13/6147/6.57/6
6	367408.840	1381486.404
7	367429.670	1361495.504
8	367452.378	10/31504.081
9	307486.699	1361508.611
10	367481,568	1361516.379
11	367521.137	1361541.103
12	367523.673	1361540.974
13	367527.663	1081540.691
14	367531.626	1381540.329
15	367536.592	1361539,888
16	367539.648	1361539,368
17	367543.492	1361538,768
18	367547 474	1361538.000
19	387551 342	1361537,333
20	367555 243	1361538 498
21	367559 129	1301535 585
29	367562 993	1381534.595
71	367586 837	1381693 528
24	367570.660	1381532 384
05	207574 459	1081531 163
26	267678 222	1361520 867
27	367501 979	1381528 496
28	JETENE CON	1361627.050
20	267500.487	1361625 530
20	367503 045	1201023 027
24	367506 670	1281622 271
21	207250.070	1001022211
32	307000.201	1281618 729
33	207003.017	1001010722
34	207017.330	1001010.047
50	207010.017	1301314,091
00	30/014.200	1301312.071
30	307017.037	1201008-027
30	307021.010	1301000.027
30	307024.030	13010/0.409
40	307023.018	1301000.013
41	307724 520	1001404.002
42	367724.528	1301431,910
4.3	367721.379	1361427.443
44	367715,610	1361916.498
45	3677073527	1301/107-007
10	367700.081	1301390.781
47	367706.887	1301391.972
40	367705.178	1361389.711
49	367697.630	1361383.073
50	367089,998	1361373,173
B1	387884.475	1361362.935
62	367681.775	1361362.373
63	367676.600	1361361.608
54	367673.562	1301359.223

Ref KIWEF Plan of Works

Strater.

Page 4 of 9

Variation to N1111040

Schedule of Coordinate	15	Polygnn ID 3
Reference No	X Coordinate	Y Coordinate
55	367671.200	1361355.285
56	367862.734	1361326.129
57	367665.083	1361306.216
68	367846,463	1361285.412
59	367637.099	1361263.243
60	367035,553	1361256.611
61	357640.708	1361254.968
62	367636.533	1361240.941
63	367631.894	1381225.385
64	387628.558	1361226.444
65	367622.708	1361212.381
66	357619.783	1361211.593
67	367609.208	1361215.081
68	367597.620	1361225.881
69	367671,712	1361237.408
70	367669.886	1361236.598
71	367668.430	1361236.240
72	387567.438	1361236,124
73	367665.939	1361236.135
74	357664.948	1361236.289
75	367562.230	1361237.193
76	367540.298	1361248,378
77	307539.434	1361248,870
70	367522.545	1361261.482
79	367498,844	1361288.241
80	367432.224	1361347.976
61	367418.613	1361360,559
82	367415.797	1301362.224
83	367416.002	1381362.629
R4	367415.150	1381363,362
85	16/412.484	1381384.729
86	367374.257	1381384.419
87	367369.094	1361888.109
88	367349.471	1361400.724
89	367343.935	1361403.458
90	367338.623	1361403.377
91	367333.047	1361402.045
92	36/329.641	1361401.775
93	367328.283	1361404 180

Ref KIWEF Plan of Works

Variation to N1111840

Schedule of Coordin	alas	Polygon ID 4	R
Reference No.	X Coordinate	Y Coordinate	
-0	369074.351	1361173,135	
1	369050 409	1361179.246	
3	309330 262	1361184.721	
3	369210 833	1361189.552	
A. C.	3696011 445	1361193 734	
5	368982 822	1361197 262	
0	368984 086	1361208.131	
7	368945 260	1361202.338	
0	309012.047	1361242.483	
4	369164 511	1361301.132	
10	389206 242	1361291.838	
11	369212 937	1361227 497	
12	369264,644	1361186.345	
13	369319.262	1361184.939	
14	369366.162	1361263.823	
15	369370.328	1351261.352	
16	369391,489	1361259.466	
17	369396.417	1361259.905	
18	360408 213	1361266.540	
19	369471,210	1301248.667	
20	268474.518	1301249.461	
21	359558,818	1361225.155	
22	369577.563	1381213.312	
23	369668,731	1361132.119	
24	369658.063	1361027.395	
25	369624 600	1381026.312	
26	369657,394	1361025.778	
27	369681 950	1361025.379	
28	366693 479	1361016.761	
29	366695 029	1351012.791	
30	389094 792	1361009.487	
31	365696 677	1361005.744	
32	369697.486	1361003.654	
33	369695.762	1360996.850	
34	369695.670	1360993,580	
35	369698.473	1360983,933	
36	369099.252	1360872.000	
37	369700.628	1360965.203	
38	369701.517	1360950.501	
39	369700.383	1360840 564	
40	369/01.652	1360938 268	
41	369/01.027	1350933 365	
42	369697.719	1380930.878	
43	369695.019	1360930.139	
44	369690.835	1360925.855	
45	369697.096	1380924.409	
46	360685.983	1380923.708	
47	369680,046	1300919,088	
-16	389676.665	1380912.986	
49	368677.006	1360908.978	
50	368076.647	1360908.698	
51	369672 947	1360907,704	
52	368669.227	1360905.786	
53	369665 489	1360905,946	
54	169661 734	1360005.184	

Ref KIWEF Plan of Works

New Martin Tar

Page 6 of 9

Variation to Notice N1111840

Ref KIWEF Plan of Works

Schedule of Coordinat	es.	Polygon ID-4
Reference No	X Coordinate	Y Coordinate
55	369857.964	1360904.601
56	369554.181	1360903.898
57	369650.386	1360903.370
58	369646.580	1360902 923
58	369642.767	1360902,555
60	369638,946	1360902.267
61	369836.120	1360902.059
62	369831.291	1360901.930
63	369627.460	1360001.881
64	369623.629	1300901.912
05	369619.799	1360902.023
66	369615.972	1360902.213
67	369812.150	1360802.483
HB	269508.336	1360902.833
69	269802.768	1360903.478
70	369596.016	1360904.374
71	369589.253	1360905,348
72	369582,503	1360906,402
73	369675.765	1360907.534
74	369569.041	1360808,745
75	369562.332	1360910.035
76	369555.638	1360911.403
77	369548.980	1360912.850
78	369542.300	1360914.374
79	369535.659	1360915.976
80	369529.036	1360917.656
81	369522.434	1380919.414
62	369515.852	1360921.248
E3	368509,283	1360923,159
84	369502.756	1360925.147
85	369496.243	1000927.211
86	369489.766	1360929.351
87	369483.292	1360931.567
88	369476.865	1360933.608
89	359470.445	1360936.226
80	369464.000	1300938,000
91	309407 713	1000041.182
W2	369451.380	1300048,772
93	200420.089	1300346.436
24	200405.030	1200349,173
95	309432 011	1200204 900
9h 67	008420.417	1200307 922
97	3004201207	1200000 040
90	360409 042	1200203 042
400	360404 060	1960967 117
100	300305 075	1500501 117
101	200200 008	1360970 667
102	309394 050	1360977.007
104	369378 161	1360980 497
105	389316 019	1361017 329
100	369317 910	1381020 660
107	369233 384	1001020.600
105	369186 887	1351140.382
1. M. M	and the second state and a second state and the sec	

Carles and a second

Paga 7 of 9

Veriation to Notice N1111840

Schedule of Coordin	ales	Polygon ID 5
Reference No	X Coordinate	Y Coordinate
D	369453.430	1360870.085
1	369454.455	1360878.685
2	300383.221	1360861.067
3	369348.485	1360881.716
4	369291.595	1360885.917
5	309235,684	1363680.045
8	369186.216	1360893.772
7	369167.672	1360893.040
U	369086.888	1360889.672
9	369039.789	1363666.243
10	368970,195	1360001.832
11	368869.064	1060000.063
12	368766,705	1360878.490
13	368726.582	1360877.175
14	368691.027	1360879.555
15	368660).379	1360880.550
18	368676.736	1360881.305
17	368671.276	1300882.890
18	368667.111	1060085.096
18	368683.342	1360887.927
20	368660.063	1360893,312
21	308657.365	1360885.170
22	368655.285	1360899.404
23	368653.803	1360903.910
24	368657.750	1360972.563
25	368659.746	1361008.176
26	368660.020	1361011.653
27	368660.672	1361017.212
28	368561.370	1361023.166
29	388682.799	1361030,884
30	368684.477	1361037,850
31	368656,646	1361044.864
32	366669.363	1361052.857
33	368673.913	1361063.669
34	369679.651	1361074.242
35	3666690.1016	1361100,694
36	366692.927	1361105.412
37	388695.416	1351109.271
35	308001.101	1361112.296
39	368/01.669	1351116,404
44	3007031714	4964493 609
41	306709.004	1001122.202
42	366712.405	1301121.272
43	200710 012	1301120.700
AF	269721 192	1361127,605
40	360721.103	1061127.001
47	300720.114	1361120,010
40	369720.015	1061129,000
40	369884 160	1261122.090
50	368007.320	1361196 050
50	369907.320	1361125,630
52	308920.402	1901123.010
52	368040 641	1361124.000
54	368981 690	1361121 906
01	30030 (.330)	 TATENCE AND ADDRESS OF

Ref KIWEE Plan of Works

A LACE AND

Page 8 of 0

Variation to Nation N1111840

Schedule of Coordin	ates	Polygon ID 5
Reference No	X Coordinate	Y Coordinate
65	366967.506	1361120.940
56	368979.418	1361118,792
67	368991.271	1361116.327
58	369008.916	1361112.046
59	369029,404	1361106 178
60	369043.629	1361101.405
61	369062.000	1361094 521
62	369118.003	1361066.924
63	369346.40B	1360930.546
84	369361.615	1360921.598
86	369379.158	1380911.996
06	369388.046	1360907.413
67	369397.008	1360802.978
88	369415,146	1360894.553
69	369432.740	1360887.149

Rel KIWEF Plan of Works

Page 9 of 9

Variation to Notice N1111840

HUNTER DEVELOPMENT CORPORATION

ABN 94 688 782 063

PO BOX 813

NEWCASTLE NSW 2300

Attention: Mr Mike Bardsley

Notice Number 1520063

File Number DOC14/53448 -01

Date 17-Apr-2014

VARIATION OF SURRENDER CONDITION

BACKGROUND

- A. HUNTER DEVELOPMENT CORPORATION ("the licensee") is the holder of Environment Protection Licence No. 6437 ("the licence") issued under the *Protection of the Environment Operations Act 1997* ("the Act"). The licence authorised the carrying out of activities at CORMORANT DRIVE, KOORAGANG, NSW, 2304.
- B. The licence was surrendered on 8 December 2010 by Surrender Notice number 1111840, subject to various conditions. The surrender notice was varied under Variation of Surrender Condition Notice # 1510956 on 2 May 2013.
- C. The licensee has requested an extension to the date provided in Condition 4(c) which acknowledges that Capping and Closure works, as defined in Condition 4(a), in Areas 2 and 3 may occur in synergy with the construction of the proposed T4 coal terminal project.
- D. This notice removes this trigger date.
- E. The date for the completion of capping and closure works in Areas 2 and 3 remains unchanged and the EPA expects that works will be commenced within a suitable timeframe to ensure that they are completed by the existing due date of 30 June 2017.

VARIATION OF SURRENDER CONDITION

- 1. By this notice the EPA varies the condition/s of the Approval of the Surrender of Licence 6437 (Surrender Notice #1111840) in the following ways:
 - Condition 4(c) varied to read:

Capping and Closure works, as defined in Condition 4(a), in Areas 2 and 3 may occur in synergy with the construction of the proposed terminal 4 ('T4') project.

.....

Rebecca Scrivener Acting Unit Head North - Hunter

(by Delegation)

INFORMATION ABOUT THIS NOTICE

• This notice is issued under section 81(3) of the Act.

Appeals against this decision

• You can appeal to the Land and Environment Court against this decision. The deadline for lodging the appeal is 21 days after you were given notice of this decision.

When this notice begins to operate

- The variations to the Approval of the Surrender of licence specified in this notice begin to operate immediately from the date of this notice, unless another date is specified in this notice.
- If an appeal is made against this decision to vary a condition of Approval of Surrender of licence and the Land and Environment Court directs that the decision is stayed the decision does not operate until the stay ceases to have effect or the Land and Environment Court confirms the decision or the appeal is withdrawn (whichever occurs first).

Ground and Surface Water Monitoring, Kooragang Island Waste Emplacement Facility Annual Monitoring 2022

1 LABORATORY REPORTS

Primary results and QAQC results were reported in the Envirolab certificates of analysis 299973, 299478, 298541, 299656, 298855, and 299097, and ALS reports ES2221693, ES2223035 and ES2224044. The data quality assessment detailed below refers to the data provided in these laboratory reports.

2 DATA QUALITY INDICATORS

Data Quality Indicators ("**DQI**") are typically developed to provide goals for the quality of data required to sufficiently meet the site-specific objectives of environmental site assessments and validation assessments. Precision, sensitivity, accuracy, representativeness, comparability and completeness (PSARCC parameters) are all indicators of data quality. The DQIs used to assess the PSARCC parameters for this assessment are detailed in **Table A**. The DQIs in **Table A** are in accordance with the ASC NEPM and are adopted by NSW EPA (2006).

Table A: Data Quality Indicators

Data Quality Indicator	Data Quality Indicator Limits	Non-Conformance Action				
Precision						
Field Duplicate RPDs (inter-laboratory and intra-laboratory).	 Hazmat has developed the following DQIs for field duplicates: Less than 10 times LOR: no limit Greater than 10 times LOR: <50% RPD Collected at a frequency of 5% for intra-lab and 5% for inter-lab duplicates. 	Assess sample matrix. Request lab confirmation and if necessary re-analysis.				
Laboratory Duplicate RPDs	Laboratory specified limits (expected to be similar to field duplicate DQIs).	Request lab confirmation				
Method Blanks	Not detected above LOR.	Request lab confirmation				
Sensitivity						
Practical Quantitation Limit (PQL) or LOR	Typically, this is achieved when PQLs is at least 3 times lower than the adopted screening levels.	Request more sensitive analysis from lab.				
Accuracy						
Laboratory Control Samples	The laboratory sets their own limits for organic and inorganic compounds which are generally between 70% and 130% recovery. Recovery limits for each analyte are specified in the laboratory reports in Appendix E.	Request Lab Confirmation				
Single Control Spikes (organics)	Specified by the laboratory within the quality control report or the certificates of analysis.	Request Lab Confirmation				
Matrix Spikes (MS)	DQI provided by laboratory and varies between Request Lab Confirmation					
MS Duplicates and Duplicate Control Spikes	DQI provided by laboratory and varies between laboratories and surrogates.	Request Lab Confirmation				

Data Quality Indicator	Data Quality Indicator Limits	Non-Conformance Action				
Surrogate Spikes	DQI provided by laboratory and varies between laboratories and surrogates.	Request Lab Confirmation				
Representativeness						
Rinsates	Not detected above LOR	Reassess decontamination procedure during sample collection				
	All fieldwork including decontamination procedures to be undertaken in accordance with industry best practice.					
	Samples analysed for the analytes requested on the COC.	Refer any non-conformances to lab request explanation				
	Sample handling, storage and transport to be in accordance with ASC NEPM.					
	Samples to be extracted and analysed within appropriate holding times.	Refer any non-conformances to lab request explanation				
	Samples to be transported under full chain of custody documentation. The laboratory to return a copy of the signed CoC acknowledging the receipt data and time and identity of samples included in the shipment.					
	Include laboratory certificates of analysis which detail any standard and non-standard methods used.					
Completeness						
	100% of results requested for analysis to be reported by analytical laboratory.	Request confirmation				
	Total representative data set to be >95% complete after data validation procedures.					
Comparability						
	Samples to be collected by experienced professional staff.					
	Where possible, analysis to be undertaken at NATA accredited laboratories utilising NATA accredited methods.					
	Detailed sample logs to be completed for each sample location noting any observed variations between conditions and signs of potential contamination.					
	Transported under the same conditions and analysed by one laboratory using consistent methods for each analysis suite.					

Data Quality Indicator	Data Quality Indicator Limits	Non-Conformance Action
	Primary samples to be stored and handled.	
	DQIs to indicate acceptable Precision and Accuracy.	

3 PRECISION

The precision of a duplicate determination was measured as Relative Percentage Difference ("**RPD**"), calculated from the following equation:

$$RPD = \left\lfloor \frac{X1 - X2}{\left(\frac{X1 + X2}{2}\right)} \right\rfloor \times 100$$

where:

X1 is the primary sample analyte value X2 is the duplicate sample analyte value

3.1 Field Precision

Intra-laboratory field duplicates are taken and analysed as an indicator of the effect of the field sampling protocol on the precision of analytical results. These duplicates also provide an indication of the nature of the field samples in terms of their relative heterogeneity and media variance. Intralaboratory duplicate samples are required to be collected at a rate of one per 20 samples (5%) in accordance with ASC NEPM and the Brief.

Inter-laboratory field duplicates are taken and analysed as an indicator of the precision between different laboratories, as well as field sampling protocol and the nature of the field sample heterogeneity. Inter-laboratory duplicate samples are also required to be collected at a rate of one per 20 samples (5%) in accordance with ASC NEPM and the Brief.

Three intra-laboratory duplicates and three inter-laboratory duplicates were submitted representing 42 primary samples. The frequency between intra-lab and inter-lab samples averages at 6.7% and 6.7% respectively which is within the DQI shown in **Table A** for intra-laboratory and inter-laboratory duplicates.

RPDs were only calculated were both the primary and the duplicate sample reported a result above LOR. The majority of calculated RPD were within stipulated limits. RPDs are shown in **Table B** below.

Table B: Summary of QA/QC Samples and RPDs

ANALYTES			Bg/ T/	Bhenols	B Free Cyanide	Weak Acid Disociable Cyanide	a G Total Cyanide	a Cr VI - Dissolved T	a Dissolved	a Db- Dissolved	втех	ткн	토 도 고 다 고 다 리 다 러 다 고 다 고 다 고 다 고 다 고 다 고 다 고 다 고 다 고	년 전 고	년 명 Benzo(a)pyrene
LOR		0.01	1	0.004	0.004	0.004	0.01	0.001	0.001			0.5	0.2	0.5	
Sample ID	Duplicate Type	Batch ID													
KS7/1		298541	0.005	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.023	< 0.001	-	-	<0.1	<0.2	<0.1
QC1		298541	0.007	<50	< 0.004	< 0.004	< 0.004	<0.005	<0.001	0.02	-	-	<0.1	<0.2	<0.1
RPD A	Intra-lab		33%	-	-	-	-	-	-	-	-	-	-	-	-
KS7/1		298541	0.007	<50	< 0.004	< 0.004	< 0.004	< 0.005	<0.001	0.02	-	-	<0.1	<0.2	<0.1
QC1A		ES2221693	<0.01	<1	< 0.004	< 0.004	< 0.004	<0.01	0.019	< 0.001	-	-	<0.5	<0.1	< 0.5
RPD A	Inter-lab		-	-	-	-	-	-	-	-	-	-	-	-	-
K11/3W		299478	5.6	<50	< 0.004	< 0.004	0.009	< 0.005	< 0.001	<0.001	-	-	<0.1	<0.1	<0.1
QC2		299478	5.7	<50	< 0.004	< 0.004	0.008	< 0.005	< 0.001	< 0.001	-	-	<0.1	<0.2	<0.1
RPD A	Intra-lab		2%	-	-	-	-	-	-	-	-	-	-	-	-
K11/3W		299478	5.6	<50	< 0.004	< 0.004	0.009	< 0.005	< 0.001	< 0.001	-	-	<0.1	<0.1	<0.1
QC2A		ES2223035	6.07	<1	< 0.004	< 0.004	< 0.004	<0.10	<0.001	<0.001	-	-	<0.5	<0.1	<0.5
RPD A	Inter-lab		8%	-	-	-	-	-	-	-	-	-	-	-	-
K11/1S		299973	6.6	<50	< 0.004	< 0.004	< 0.004	<0.005	<0.001	< 0.001	-	-	<0.1	<0.2	<0.1
QC3		299973	6.6	<50	< 0.004	< 0.004	< 0.004	< 0.005	< 0.001	< 0.001	-	-	<0.1	<0.2	<0.1
RPD A	Intra-lab		0%	-	-	-	-	-	-	-	-	-	-	-	-
K11/1S		299973	6.6	<50	< 0.004	< 0.004	< 0.004	< 0.005	< 0.001	< 0.001	-	-	<0.1	<0.2	<0.1
QC3A		ES2224044	5.41	<1	< 0.004	< 0.004	< 0.004	<0.01	<0.001	<0.001	-	-	<0.5	<1.0	<0.5
RPD A	Inter-lab		20%	-	-	-	-	-	-	-	-	-	-	-	-

3.2 Laboratory Precision

Precision is a measure of the variation in results from a laboratory method. The laboratory measures the precision of the analyses performed on a particular batch of samples using laboratory duplicates. Acceptable RPDs for parameters are specified by the testing laboratory.

Each RPD was in accordance with the stipulated DQIs.

3.3 Sensitivity

The LOR is at least 3 times below the adopted investigation limit for all analytes with the exception of hexavalent chromium. Hexavalent chromium was reported at concentrations below the LOR and is therefore considered to be close to the adopted guideline values. Overall, the data is considered sufficiently sensitive for interpretative use.

4 ACCURACY

Accuracy is a measure of the closeness of the analytical result obtained by a method to the 'true' value. The laboratory measures accuracy using matrix spikes, laboratory control samples, control spikes, method blanks and surrogate spikes.

4.1 Matrix Spikes

Matrix spikes are prepared by spiking a field sample with a known concentration of a recommended spiking compound in order to ascertain the effects of the specific sample matrix on the recovery of analytes.

Accuracy as indicated by matrix spikes is measured in terms of percentage recovery as defined by the following equation:

$$\%R = \frac{SSR - SR}{SA} \times 100$$

where: %R = percentage recovery of the spike

SSR = spiked sample result

SR = sample result (native)

SA = spike added

All matrix spike recoveries in all work orders were within stipulated limits.

4.2 Laboratory Control Spikes

Laboratory Control Spikes ("**LCS**") are prepared by spiking a clean matrix (i.e. a matrix with the target analytes below the LOR), with known quantities of an organic or inorganic compound. Laboratory control samples are analysed at a rate of one per analytical batch for analytes.

Accuracy as indicated by laboratory control samples is measured in terms of percentage recovery as defined by the following equation:

%R = LCSR/LCSC

where:%R= percentage recovery of the laboratory control sampleLCSR= laboratory control sample resultLCSC= laboratory control sample concentration

The quality control analyte specific acceptance criterion is three times the standard deviation of the historical mean for each analyte. The range for each analyte is specified in the certificate of analysis.

No LCS outliers occurred.

4.3 Method Blanks

Method blanks monitor the externally introduced contaminants, which potentially derive from glassware, cleaning reagents and digestion reagents during the analysis process. The laboratory blank is treated as a sample in the laboratory, going through the same sample preparation and analysis procedures as corresponding samples.

All method blank results were reported below the LOR.

4.4 Surrogate Spikes

Both primary and QAQC samples analysed for organic parameters are spiked prior to extraction with surrogate compounds that are representative of the target analysis, but are not commonly found in samples taken from the natural environment.

Accuracy as indicated by surrogate spikes is measured in terms of percentage recovery as defined by the following equation:

%R = SSR/Sa x 100

where:

e: %R = percentage recovery of the spike SSR = spiked sample result SA = spike added

The DQIs used for the assessment are based on USEPA surrogate recovery limits. No surrogate spike outliers occurred.

5 **REPRESENTATIVENESS**

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sample point or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design and implementation of the sampling program.

5.1 Rinsate Samples

A total of 14 rinsate samples were collected and analysed for the primary sample analysis. Results are reported below the LOR for the majority of analytes. Analytical results are provided in **Table C** and in the certificates of analysis in **Appendix E**.

QC sample	Batch No	Date	Analysis Results
Rinsate 01	298541	20/06/2022	All below laboratory LOR
Rinsate 02	298541	21/06/2022	All below laboratory LOR
Rinsate 03	298855	22/06/2022	All below laboratory LOR
Rinsate 04	298855	23/06/2022	All below laboratory LOR
Rinsate 05	299097	24/06/2022	All below laboratory LOR
Rinsate 06	299097	27/06/2022	All below laboratory LOR
Rinsate 07	299478	28/06/2022	All below laboratory LOR
Rinsate 08	299478	29/06/2022	All below laboratory LOR
Rinsate 09	299656	01/07/2022	All below laboratory LOR
Rinsate 10	299656	04/07/2022	All below laboratory LOR
Rinsate 11	299973	06/07/2022	All below laboratory LOR

Table C: Rinsate Blank Analytical Results

5.2 General Parameters

Other general parameters were employed to ensure representativeness, including:

- The sampling and analysis program was developed by experienced professionals based on adequate site history and a thorough understanding of the sampling objective.
- Samples were placed in clean, preserved/unpreserved laboratory supplied containers suitable for the target analytes. Samples were stored, transported and handled at a temperature of less than 4 °C and in accordance with NEPM 2013.
- Samples were transported under full chain of custody documentation including the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method and departure time from the site. The laboratory returned a copy of the signed chain of custody acknowledging the receipt data and time and identity of samples included in the shipment. The chain of custody documentation is included in each of site contamination assessment reports.
- All fieldwork was undertaken in general accordance with Hazmat's standard operating procedures.

6 COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Sample data should be comparable with other measurement data for similar samples and sample conditions. Data comparability was maintained by undertaking the validation as follows:

- The samples were collected by Hazmat professional field personnel in general accordance with Hazmat's standard operation procedures;
- Primary samples were stored, handled and transported under the same conditions and analysed by the same laboratory using consistent methods; and
- DQIs indicated acceptable precision and accuracy.

7 COMPLETENESS

Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The DQI for completeness is that valid data is generated for all critical samples and that, overall, the data is valid. This is considered to be the case for the data set presented in this assessment.

7.1 Laboratory Accreditation

Envirolab and ALS are NATA accredited for the requested analyses and conducted all the requested analyses in accordance with the guidelines outlined in NEPM (2013). Extraction and analysis methods and the LORs are provided in the certificates of analysis provided in **Appendix E**.

8 CONCLUSIONS

The majority of PSARCC parameters were within the specified DQIs and, overall, the data is considered to be of sufficient quality to meet the objectives of the investigation.

Table A: Sample Log 2022

Sample ID	GPS Coordinates, Lat and Long	a. Depth to water (m from TOC)	b. Well Stickup (m)	Depth to Water (m BGS)	Depth of Well	RL to top of casing (mAHD)	Inferred Groundwater RL (mAHD)	Volume purged	рН	Conductivity (us/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Temperature (⁰ C)	VOC Concentration	Observations
K5/4	@-32.866196525,151.733088180556	4.81	0.61	4	5.6	5.6	1.6	2	6.73	3.9	6.7	77.2	20.9	0	Clear, no odour
K8/5E	@-32.8700999194444,151.736928847222	4.16	1.73	2.43	5.36	6.203	3.773	10	10.32	2688	1.05	-262.8	19.4	0	Clear, no odour
K10/2	@-32.8739240083333,151.742615269444	2.03	0.89	1.14	9.97	9.949	8.809	15	7.43	362.8	4.48	86.9	18.7	0	Brown, murky, organic odour
K10/2N	@-32.8739010138889,151.742616533333	6.26	0.87	5.39	10.09	10.15	4.76	3	8.21	21.8	5.12	-212.9	19.6	0	Clear, organic odour
K5/5N	@-32.871887975,151.734181980556	2.89	0.65	2.24	3.7	5.08	2.84	8.5	7.09	31	7.13	76.4	19.7	0	Brown, clear, no odour
K5/6N	@-32.86981455,151.734329236111	2.23	0.62	1.61	3.56	4.54	2.93	10	5.43	29.2	4.19	-178.9	18.5	0	Clear, organic odour
K7/4N	@-32.866774825,151.738804752778	4.95	0.26	4.69	8.99	6.99	2.3	15	6.79	34.9	6.7	-160.8	22.9	0	Clear, no odour
K10/2NN	@-32.8738900583333,151.742619713889	10.18	1.03	9.15	14.11	10.151	1.001	10	6.87	20649	2.88	-272.3	20.7	0	Brown, clear, organic odour
K7/2S	@-32.8659912833333,151.739893777778	6.44	0.66	5.78	11.4	7.569	1.789	1	6.74	3570	8.24	-34.2	20.9	0	Brown, murky,no odour
K8/5W	@-32.8701029638889,151.736928872222	4.85	1.79	3.06	8.05	6.251	3.191	5	8.21	1592	4.91	-84.6	16.8	0	Clear, no odour
K5/5S	@-32.8719091722222,151.734169858333	3.76	0.59	3.17	9.49	5.09	1.92	15	7.2	47	6.61	-166.2	20.6	0	Clear, organic odour
K5/6S	@-32.8698296694444,151.73432795	3.14	0.61	2.53	9.83	4.73	2.2	10	7.11	3170	2.05	-131	20	0	Clear, slightly cloudy
K5/6NN	@-32.8698023361111,151.734331180556	3.01	0.45	2.56	5.51	4.39	1.83	10	6.29	75.9	4.71	458.9	20.2	0	Clear, organic odour
K7/4S	@-32.8667824805556,151.738801986111	5.98	0.5	5.48	13.73	7.19	1.71	20	6.86	219.1	4.73	-70.4	21.5	0	Yellow, murky, no odour
K9/2E	@-32.8/11932138889,151./459///6666/	1.88	0.28	1.6	11.6	2.85	1.25	20	6.98	692.4	0.33	-124.6	19.5	0	Clear, no odour
K9/2W	@-32.8/11919638889,151./45961819444	1.866	0.28	1.586	3.9	2.86	1.2/4	7.5	5.8	29.7	1.07	-125.6	18	0	Slightly murky, no odour
K9/4E	@-32.870461677778,151.742101736111	1.55	0.25	1.3	5.25	3.13	1.83	10	6.89	296.7	0.54	-144.7	17.1	0	Grey, murky, no odour
K9/4W	@-32.870457775,151.742094986111 @-32.87611618888880.151.7364008888880	2.03	0.2	1.83	5.49	3.09	1.20	20	7.18	104.8	4.72	-88.3	18.1	0	Light yellow, relatively clear, no odour
K11/3E	@-32,876110075 151 736482647222	1.45	0.51	0.94	0.40 12.57	2.430	1.490	10	6.93	10.2	2.97	-199.5	10.3	0	Gley, mulky,organic odour
K12/4N	@-32 8568868944444 151 721287152778	1.75	0.52	0.45	12.37	2.393	0.065	20	6.29	100.4	2.41	-119	19.0	0	Vellow clear no odour
K12/4N	@-32.8604496388889 151 730110666667	1.03	0.56	0.45	12.73	1.415	Woll damag	20 Ind during Ash Islau	0.20	190.4	0.90	-41.2	17.4	0	renow, clear, no odour
K11/1	@-32.8762061194444 151 745137916667	1 31	0.75	0.56	3.57	2 038	2 378		5.82	148	2.00	-228.3	16.8	0	Brown murky organic odour
K11/1S	@-32 8762269555556 151 745147841667	2.8	0.75	2.03	8.92	3 707	1 677	15	7.82	392.2	1 94	-380.9	18.9	0	Brown, murky, organic odour
K11/2E	@-32.8757992194444.151.739075363889	1 42	0.72	0.7	5.49	2 272	1.572	8	7.12	24.3	7.01	-99.2	18.1	0	brown/orange_murky
K11/2W	@-32.8758008861111.151.739066211111	1.7	0.41	1.29	11.46	2.382	1.092	20	7.39	368.5	6.29	-255.6	18.7	0	Clear, organic odour
K9/3N	@-32.8741753777778,151.747846636111	2.75	0	2.75	10.2	3.83	1.08	10	6.27	75.2	5.35	-157.2	20.6	0	Clear, organic odour
K9/3S	@-32.8741838277778,151.747842611111	1.74	0	1.74	3.74	4.09	2.35	6	7.75	137.2	8.19	-144.2	18	0	Cloudy, organic odour
K12/1W	@-32.8710135361111,151.718306388889	0.99	0.29	0.7	3.73	1.8	1.1	5	6.86	39.8	5.82	217.7	16.3	0	Brown, murky, no odour
K12/1E	@-32.8710068805556,151.718298030556					1.81	1.81			We	Il Inaccessible - Caps o	n too tight	•		
K12/7	@-32.863187625,151.731627994444	0.72	0.2	0.52	4.31	1.816	1.296	10	7.33	11214	4.44	119.6	16.1	0	Clear, no odour
K12/7E	@-32.8631926916667,151.731713938889	1.29	0.35	0.94	12.1	1.76	0.82	10	7.08	402.5	1.7	-80.5	18.2	0	Light brown, organic
K12/9	@-32.864467975,151.741461905556					1.939	1.939			W	ell inaccessible due to t	flooding			
K12/9E	@-32.8644670416667,151.742649177778					2.45	2.45			W	ell inaccessible due to	flooding			
K12/10	@-32.8656095555556,151.748294761111	0.85	0.7	0.15	19.3	2.134	1.984	30	6.87	43539	1.86	-106.8	17.9	0	Clear, organic odour
K12/10E	@-32.8656093083333,151.748347552778	1.17	0.47	0.7	4.42	1.818	1.118	8.5	6.95	47123	0.9	-277	16.7	0	Dark grey, sediments
E61D	@-32.8645866583333,151.734909161111	5.7	0.69	5.01	23.56	6.338	1.328	10	6.92	44047	1.77	122.4	20.6	0	Clear, organic odour
E61S	@-32.8645983305556,151.734904794444					6.571	6.571				Well dry	1			
336A	@-32.8728012583333,151.722970138889	5.4	0.8	4.6	6.8	6.72	2.12	10	7.23	15.1	4.99	-61.2	18.7	0	Yellow, clear, no odour
336B	@-32.8727923027778,151.722959380556	5.8	0.55	5.25	12.39	6.71	1.46	20	6.91	6288	2.01	-94.8	19	0	Gold/dark yellow, no odour
KS1/3	@-32.8716136194444,151.720904211111			Not /	Applicable - Surface	e Water Location			7.2	621	2.77	-6.3	13.8	0	Murky, black, organic odour
KS7/1	@-32.8651573555556,151.739212786111			Not A	Applicable - Surface	e Water Location			6.96	1894	7.82	222.9	14	0	Clear, no odour
KS12/6	@ 32 875084805556 24 008070422222			Not /	Applicable - Surface	e Water Location			7.31	46.7	11.23	14.4	14	0	Pale brown, clear, no odour
K310/1	@ 32 9650012129990 151 720904025	6.04	0.66	INUL /			1.090		1.23	001	I.0	40.4	14.0	0	Clear, no odour
K7/2N	@-32 8648820777778 151 73500725	0.24	0.00	2.06	C8.0	6.276	2,416	0	7.25	12.6	6.02	171.0	10.1	0	Grou clear organic odour
RHo20c	@-32,8727340305556,151,748208601667	4.00	0.37	3.90	0.00	0.370	2.410	9	7.55	029	0.03	-171.0	19.1	0	Cloudy, organic odour
GHD01N	@-32 8741675833333 151 745355408333	2.0	0.73	5.74	9.38	10.051	4 311	10	1.91	1 930	Well Obstructed with T		10.3		Cioudy, organic Ouour
GHD01S	@-32 8741774972222 151 745352797222	8.95	0.23	8.68	19.95	10.001	1 429				Well Obstructed with T	ubing			
KS2/1	@-32.8658496111111 151 730459036111	0.00	0.21	Not A	Applicable - Surface	Water Location	1.423		8 57	994	8.63	136.5	14.6	0	Clear no odour
NCIG/1	@-32.8654273361111 151 724129322222	1.39	0.73	0.66	6 75	0	-0.66	12	8 94	14.4	1.81	-227.8	18.9	0	Clear organic odour
NCIG/2	@-32.8653673.151.724219438889	1.5	0.73	0.77	13	0	-0.77	15	7.04	477.3	2.24	-118.6	19.1	0	Clear, organic odour
BH21S	@-32.8701522416667.151.726858402778	5.2	0.3	4.9	6.48	7,33	2.43	10	10.93	1663	1.64	302.1	21	0	Brown, organic odour
344A		5.62	0.75	4.87	8.48			10	5.26	83.9	2.3	-167.8	20.9	0	Grey, strong odour
344B		8.25	0.77	7.48	12.26			10	6.49	36.8	0.82	-77.3	19.5	0	Dark grey, murky, no odour
1		•	-	-	-					-	*		-	-	

Table B: Results Summary 2022

	ANAL	YTES		표 pH units	conductivity wa/sπ	menia WT/	Ъhenols Д	B Free Cyanide	Weak Acid Disociable Cyanide	3 Total Cyanide	T/Dissolved	B Mo - Dissolved*	a Job - Dissolved⁴	면 G Naphthalene	표 더 더	⊈ Acenaphthene	- Дрцоrene Дрц	户henanthrene 了	면 더 더	Д Пuoranthene П	-Др.	E Benz(a)anthracen © P e	D Chrysene רhr	표 Benzo(b)&(k)fluor 더 anthene	표 G P Benzo(a)pyrene	타 Indeno(1.2.3- G cd)pyrene	표 Dibenzo(ah)anthra G Cene	E Benzo(ghi)perylen Ge	년 전 고 고 대 고 대 고 대 고 대 고 대 고 대 고 대 고 대 고 대
	LC	DR	<u></u>			0.01	1	0.004	0.004	0.004	0.01	0.001	0.001	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
		Criteria		-	-	0.91	400µg/L	-	-	0.004mg/L	0.0044mg/L	- 0.023.(L)	0.0044mg/L	50µg/L	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Sample ID	Type of Bore	Batch ID	Date			0.01	Hoopgie			0.00 mig/L	0.00 Hillg/L	0.020 (L)	0.00 milg/L	ropg/L															
K12/7E	deep	299478	29/06/2022	7.08	402.5	20	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.002	<0.001	<0.2	<0.1	0.8	0.7	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	1.5
NCIG/2	deep	299478	29/06/2022	7.04	477.3	29	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K5/5S	deep	298855	22/06/2022	7.2	47	0.93	-	<0.004	< 0.004	< 0.004	<0.005	-	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K9/2F	deep	290000	22/06/2022	6.98	692.4	3.7	<00	<0.004	< 0.004	<0.005	< 0.005	0.002	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K9/3N	deep	298541	21/06/2022	6.27	75.2	2.8	<50	<0.004	< 0.004	< 0.004	< 0.005	< 0.002	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K11/1S	deep	299973	6/07/2022	7.82	392.2	6.6	<50	< 0.004	< 0.004	< 0.004	< 0.005	< 0.001	< 0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	0.1
K11/3W	deep	299478	28/06/2022	6.74	159.8	5.6	<50	<0.004	< 0.004	0.009	<0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K12/4N	deep	299656	1/07/2022	6.28	190.2	48	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.001	< 0.001	< 0.2	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	< 0.1
K11/2W	deep	298541	21/06/2022	7.39	368.5	4.9	<50	<0.004	<0.004	<0.004	<0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K9/4VV	deep	299097	29/06/2022	6.87	43539	51	<50	<0.004	<0.004	<0.004	<0.005	0.001	- <0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K5/6N	fill	298855	22/06/2022	5.43	29.2	0.65	<50	<0.004	< 0.004	0.011	< 0.005	-	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K7/1	fill	298855	23/06/2022	7.35	12.6	6.7	<50	< 0.004	< 0.004	0.038	< 0.005	0.28	<0.001	3.8	<0.1	0.4	<0.1	<0.1	<0.1	0.2	0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	4.6
K10/2	fill	299656	1/07/2022	7.43	362.8	0.04	-	-	-	-	< 0.005	0.034	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K8/5E	fill	299097	24/06/2022	10.32	2688	0.98	<50	<0.004	< 0.004	0.038	<0.005	0.037	<0.001	2.1	<0.1	1.4	0.6	1.2	<0.1	0.5	1.3	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	7.1
344A	fill	299097	27/06/2022	5.26	83.9	0.37	<50	<0.004	< 0.004	0.012	<0.005	0.002	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K5/5N	fill	298855	22/06/2022	7.09	31	0.01	<50	< 0.004	< 0.004	-	< 0.005	-	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K10/2N	fill	299656	1/07/2022	8.21	21.8	0.48	<50	<0.004	< 0.004	-	< 0.005	0.008	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
336A	fill	299478	28/06/2022	7.23	15.1	0.83	<50	<0.004	< 0.004	< 0.004	< 0.005	0.002	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K5/4	fill	298855	24/06/2022	6.73	3.9	0.084	-	< 0.004	< 0.004	<0.004	< 0.005	-	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K7/4N	fill	298855	23/06/2022	6.79	34.9	11	<50	<0.004	0.004	0.18	<0.005	0.031	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K12/7	shallow	299656	1/07/2022	7.33	11214	0.25	<50	< 0.004	< 0.004	< 0.004	< 0.005	< 0.001	< 0.001	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1
NCIG/1	shallow	299478	29/06/2022	8.94	14.4	0.58	<50	<0.004	<0.004	< 0.004	< 0.005	0.009	<0.001	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1
55/6NN	shallow	299470	20/06/2022	6.29	75.9	0.56	<50	<0.004	<0.004	<0.004	<0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
BHe29S	shallow	298541	21/06/2022	7.91	938	1.3	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.003	< 0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
E61D	shallow	298855	22/06/2022	6.92	44047	3.1	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.003	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K8/5W	shallow	299097	24/06/2022	8.21	1592	5.2	<50	< 0.004	< 0.004	0.064	<0.005	0.025	<0.001	<0.2	<0.1	0.9	0.6	0.7	<0.1	0.3	0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	2.8
K7/2S	shallow	298855	23/06/2022	6.74	3570	20	<50	< 0.004	< 0.004	< 0.004	< 0.005	-	-	1	<0.1	<0.1	<0.1	0.2	<0.1	0.3	0.3	0.2	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	2.3
K9/2W	shallow	299097	24/06/2022	5.8	27.9	0.67	-	<0.004	<0.004	<0.004	< 0.005	0.018	-	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K11/1	shallow	299973	6/07/2022	5.82	148	0.29	<50	<0.004	<0.004	<0.004	<0.005	0.005	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	0.19
K9/3S	shallow	298541	21/06/2022	7.75	137.2	0.5	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.018	< 0.001	<0.2	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.1
K10/2NN	shallow	299656	1/07/2022	6.87	20649	7.6	-	< 0.004	< 0.004	< 0.004	< 0.005	<0.001	<0.001	8.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	8.3
K11/2E	shallow	298541	21/06/2022	7.12	24.3	0.18	<50	< 0.004	<0.004	< 0.004	< 0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K12/10E	shallow	299478	29/06/2022	6.95	47123	1.2	<50	< 0.004	<0.004	<0.004	< 0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K12/1W	shallow	299656	1/07/2022	6.86	39.8	0.21	<50	<0.004	<0.004	< 0.004	< 0.005	0.003	0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
K11/3E	shallow	299478	28/06/2022	6.93	10.2	5.6	<50	< 0.004	<0.004	<0.004	< 0.005	0.004	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
344B	shallow	299097	27/06/2022	6.49	36.8	3	<50	< 0.004	< 0.004	0.004	< 0.005	0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
BH21S	shallow	299097	27/06/2022	10.93	1663	7.5	<50	< 0.004	< 0.004	0.21	<0.005	0.54	<0.001	210	2.6	3.7	3	10	2.8	4.4	3.6	0.8	0.6	0.9	0.6	0.3	<0.1	0.4	240
K7/4S	shallow	298855	23/06/2022	6.86	219.1	0.63	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.003	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
KS12/6	surface	299656	1/07/2022	7.31	46.7	0.056	<50	< 0.004	< 0.004	< 0.004	0.01	0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
KS1/3	surface	298541	20/06/2022	7.2	621	0.082	<50	< 0.004	< 0.004	< 0.004	< 0.005	< 0.001	< 0.001	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
KS2/1	surface	298541	20/06/2022	8.57	994	0.16	<50	< 0.004	< 0.004	< 0.004	< 0.005	0.027	< 0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.1	<0.1	<0.1	<0.1	<0.1
KS10/1	suriace	290541	20/06/2022	0.90	004	<0.005	<50	<0.004	<0.004	<0.004	<0.005	0.023	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
10/1	sunace	290041	20/00/2022	1.23	001	0.000	<00	<0.004	<0.004	<0.004	<0.005	<0.001	<0.001	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Evened KIM	EE trigger velver																												
Exceed KIW																													

CERTIFICATE OF ANALYSIS 298541

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	N4656-KIWEF
Number of Samples	12 Water
Date samples received	22/06/2022
Date completed instructions received	22/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	29/06/2022
Date of Issue	29/06/2022
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 298541 Revision No: R00

Page | 1 of 14

PAHs in Water - Low Level						
Our Reference		298541-1	298541-2	298541-3	298541-4	298541-5
Your Reference	UNITS	KS7/1	KS2/1	KS1/3	KS10/1	QC1
Date Sampled		20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	93	88	87	69	97

PAHs in Water - Low Level						
Our Reference		298541-6	298541-7	298541-8	298541-9	298541-10
Your Reference	UNITS	Rinsate 1	Rinsate 2	K11/2W	K11/2E	K9/3N
Date Sampled		20/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	27/06/2022	27/06/2022	23/06/2022	23/06/2022	25/06/2022
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	110	89	83	100	112

PAHs in Water - Low Level			
Our Reference		298541-11	298541-12
Your Reference	UNITS	K9/3S	BHe29s
Date Sampled		21/06/2022	21/06/2022
Type of sample		Water	Water
Date extracted	-	23/06/2022	23/06/2022
Date analysed	-	25/06/2022	25/06/2022
Naphthalene	μg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	122	91

Total Phenolics in Water						
Our Reference		298541-1	298541-2	298541-3	298541-4	298541-5
Your Reference	UNITS	KS7/1	KS2/1	KS1/3	KS10/1	QC1
Date Sampled		20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Total Phenolics in Water						
Our Reference		298541-8	298541-9	298541-10	298541-11	298541-12
Your Reference	UNITS	K11/2W	K11/2E	K9/3N	K9/3S	BHe29s
Date Sampled		21/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		298541-1	298541-2	298541-3	298541-4	298541-5
Your Reference	UNITS	KS7/1	KS2/1	KS1/3	KS10/1	QC1
Date Sampled		20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Date analysed	-	23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Molybdenum-Dissolved	μg/L	23	27	<1	<1	20
HM in water - dissolved						
Our Reference		298541-6	298541-7	298541-8	298541-9	298541-10
Our Reference Your Reference	UNITS	298541-6 Rinsate 1	298541-7 Rinsate 2	298541-8 K11/2W	298541-9 K11/2E	298541-10 K9/3N
Our Reference Your Reference Date Sampled	UNITS	298541-6 Rinsate 1 20/06/2022	298541-7 Rinsate 2 21/06/2022	298541-8 K11/2W 21/06/2022	298541-9 K11/2E 21/06/2022	298541-10 K9/3N 21/06/2022
Our Reference Your Reference Date Sampled Type of sample	UNITS	298541-6 Rinsate 1 20/06/2022 Water	298541-7 Rinsate 2 21/06/2022 Water	298541-8 K11/2W 21/06/2022 Water	298541-9 K11/2E 21/06/2022 Water	298541-10 K9/3N 21/06/2022 Water
Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS -	298541-6 Rinsate 1 20/06/2022 Water 23/06/2022	298541-7 Rinsate 2 21/06/2022 Water 23/06/2022	298541-8 K11/2W 21/06/2022 Water 23/06/2022	298541-9 K11/2E 21/06/2022 Water 23/06/2022	298541-10 K9/3N 21/06/2022 Water 23/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	UNITS - -	298541-6 Rinsate 1 20/06/2022 Water 23/06/2022 23/06/2022	298541-7 Rinsate 2 21/06/2022 Water 23/06/2022 23/06/2022	298541-8 K11/2W 21/06/2022 Water 23/06/2022 23/06/2022	298541-9 K11/2E 21/06/2022 Water 23/06/2022 23/06/2022	298541-10 K9/3N 21/06/2022 Water 23/06/2022 23/06/2022
Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic-Dissolved	UNITS - - µg/L	298541-6 Rinsate 1 20/06/2022 Water 23/06/2022 23/06/2022 <1	298541-7 Rinsate 2 21/06/2022 Water 23/06/2022 23/06/2022 <1	298541-8 K11/2W 21/06/2022 Water 23/06/2022 23/06/2022 [NA]	298541-9 K11/2E 21/06/2022 Water 23/06/2022 23/06/2022 [NA]	298541-10 K9/3N 21/06/2022 Water 23/06/2022 23/06/2022 [NA]

<1

<1

<1

<0.05

<1

<1

<1

<1

<1

<1

<0.05

<1

<1

<1

<1

<1

<1

1

<1

<1

	298541-11	298541-12
UNITS	K9/3S	BHe29s
	21/06/2022	21/06/2022
	Water	Water
-	23/06/2022	23/06/2022
-	23/06/2022	23/06/2022
µg/L	<1	<1
µg/L	18	3
	UNITS - - µg/L µg/L	UNITS 298541-11 K9/3S 21/06/2022 Water - 23/06/2022 - 23/06/2022 µg/L <1 18

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

Chromium-Dissolved

Copper-Dissolved

Mercury-Dissolved

Molybdenum-Dissolved

Nickel-Dissolved

Zinc-Dissolved

Lead-Dissolved

Miscellaneous Inorganics	Aiscellaneous Inorganics												
Our Reference		298541-1	298541-2	298541-3	298541-4	298541-5							
Your Reference	UNITS	KS7/1	KS2/1	KS1/3	KS10/1	QC1							
Date Sampled		20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022							
Type of sample		Water	Water	Water	Water	Water							
Date prepared	-	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022							
Date analysed	-	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022							
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004							
Total Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004							
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004							
Ammonia as N in water	mg/L	<0.005	0.16	0.082	0.056	0.007							
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005							

Miscellaneous Inorganics						
Our Reference		298541-8	298541-9	298541-10	298541-11	298541-12
Your Reference	UNITS	K11/2W	K11/2E	K9/3N	K9/3S	BHe29s
Date Sampled		21/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Date analysed	-	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	4.9	0.18	2.8	0.50	1.3
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	ITROL: PAH	ls in Wate	er - Low Level			Dup	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			23/06/2022	[NT]	[NT]		[NT]	23/06/2022	
Date analysed	-			23/06/2022	[NT]	[NT]		[NT]	27/06/2022	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]	[NT]		[NT]	90	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	85	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	86	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	118	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	94	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	107	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	69	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]	[NT]		[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	82	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	<0.1	
Surrogate p-Terphenyl-d14	%		Org-022/025	92	[NT]	[NT]		[NT]	87	

QUALITY CON	ITROL: PAH	s in Wate	er - Low Level			Du		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
Date extracted	-			[NT]	[NT]		[NT]	[NT]	23/06/2022		
Date analysed	-			[NT]	[NT]		[NT]	[NT]	23/06/2022		
Naphthalene	µg/L	0.2	Org-022/025	[NT]	[NT]		[NT]	[NT]	95		
Acenaphthene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	95		
Fluorene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	95		
Phenanthrene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	118		
Fluoranthene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	106		
Pyrene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	113		
Chrysene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	97		
Benzo(a)pyrene	µg/L	0.1	Org-022/025	[NT]	[NT]		[NT]	[NT]	62		
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	[NT]		[NT]	[NT]	100		

QUALITY CO	NTROL: Tot	al Phenol	ics in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298541-2
Date extracted	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Date analysed	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	104	99

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	298541-2	
Date prepared	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022	
Date analysed	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	6	<1	[NT]		107	[NT]	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	6	<0.1	[NT]		106	[NT]	
Chromium-Dissolved	µg/L	1	Metals-022	<1	6	<1	[NT]		107	[NT]	
Copper-Dissolved	µg/L	1	Metals-022	<1	6	<1	[NT]		108	[NT]	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	107	104	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	6	<0.05	<0.05	0	100	[NT]	
Nickel-Dissolved	µg/L	1	Metals-022	<1	6	<1	[NT]		105	[NT]	
Zinc-Dissolved	µg/L	1	Metals-022	<1	6	<1	[NT]		105	[NT]	
Molybdenum-Dissolved	µg/L	1	Metals-022	<1	1	23	23	0	104	100	

QUALITY CC	ONTROL: HN	1 in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	6	23/06/2022	23/06/2022		[NT]	
Date analysed	-			[NT]	6	23/06/2022	23/06/2022		[NT]	
Lead-Dissolved	µg/L	1	Metals-022	[NT]	6	<1	[NT]		[NT]	
Molybdenum-Dissolved	µg/L	1	Metals-022	[NT]	6	<1	[NT]		[NT]	

QUALITY CO	NTROL: Mise	cellaneou	is Inorganics			Du		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298541-2	
Date prepared	-			22/06/2022	1	22/06/2022	22/06/2022		22/06/2022	22/06/2022	
Date analysed	-			22/06/2022	1	22/06/2022	22/06/2022		22/06/2022	22/06/2022	
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	100	98	
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	103	102	
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	97	97	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	<0.005	<0.005	0	114	106	
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	1	<0.005	<0.005	0	103	103	

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	22/06/2022	22/06/2022		[NT]	
Date analysed	-				11	22/06/2022	22/06/2022		[NT]	
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]	
Total Cyanide	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]	
Free Cyanide in Water	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057		11	0.50	0.50	0	[NT]	
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	[NT]	11	<0.005	<0.005	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ENVIR	огав	СНА	IN OF	CUSTO	ΟY	Y - Client								<u>Sy</u> 12 P}	<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au					
GROL	IP	ENVI	ROLAB GR	OUP - Nation	nal ph	one n	umber	r 1300) 42 4	13 44	14					erth Lab	- MPL I	Laborate Muare	ories a WA 6	154
Client: Hazn	nat Services				Client Project Name / Number / Site etc (ie report title):								PI	16-18 Hayden Crt Myaree, wA 6154 Ph 08 9317 2505 / lab@mpl.com.au						
Contact Pers	son: Florence Archer				N4656 - KIWEF								Melhourne Lah - Envirolah Services							
Project Mgr:	Florence Archer				PO No	D.:									1 II	A Daime	re Driv	e Scores	sby VIC 3	3179
Sampler: FA	Sampler: FA/DH					olab Qi	uote No.	:			1	6SY078			P	n 03 976	53 2500	/ melbo	ourne@i	anvirolab.com.au
Address: Level 1 45C Fitzroy Street Carrington NSW 2294					Date results required: Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges								<u>Bi</u> 20 Pi	<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au						
Phone:	02 49611887	Mob:	0438	246996	Repo	rt form	at: esda	t/equ	iis /						78	a The Pa	irade, N	orwood	l, SA 506	57
Email:					Lab C	omme	nts:								P	h 0406 3	150 706	/ adela	iide@en	virolab.com.au
	florence.a	r <u>cher@haz</u>	matservices.cor	n.au		_												-		
	Sam	ole informat	lon			<u> </u>					Te	sts Requ	aired					,	-	Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Ammonia	Phenois	Free Cyanide/Total cyanide/dissolved cyanide	Hexavalent Chromium	Molybdenum	Lead	PAH	Free Cyanide/Dissovled Cyanide	BTEX	Heavy Metals (standard 8 + molybdenum)						Provide as much information about the sample as you can
1	KS7/1		20/06/2022	Water	х	X	X	X	x	х	x									
L	KS2/1		20/06/2022	Water	X	X	X	X	x	х	x						_			
- 3	KS1/3		20/06/2022	Water	X	X	X	X	x	х	x						ĺ			
	KS10/1		20/06/2022	Water	х	X	X	x	x	х	x					er	มีเลิก ค	8	1.	Ashlev
5	QC1		20/06/2022	Water	х	X	x	x	x	х	x			_				Ch	hiswool Ph: (02	1NSW 2734 19010 6200
6	Rinsate 1		20/06/2022	Water	х	X	x_	x	x	х	x			X		<u>Ja</u>	<u>b No:</u>			
7	Rinsate 2		21/06/2022	Water	х	X	x	X	x	х	X			X			+ D	29	8541	<u> </u>
8	K11/2W		21/06/2022	Water	х	x	x	X	x	х	X					fir	ne Rec	eived:	10	Po
q	K11/2E		21/06/2022	Water	x	X	x _	x	x	х	X					Re	ceived	by: T	141	h
U	K9/3N	_	21/06/2022	Water	Υ Î	x	X	x	x	х	x			ļ		Te	mp: Co	biramt	ent	
11	K9/3S		21/06/2022	Water	х	x	<u>x</u>	_ x _	x	х	X						oang: I	cencer Intact/E	1 <u>80%</u>	
71	BHe29s		21/06/2022	Water	x	X	x	x	х	х	x					_				<u> </u>
																				<u> </u>
Relinquished by (Company): Hazmat Services				Received by (Company): EUS SYD						Lab use only:										
Print Name: Florence Archer					Print Name: <u>T/HA</u> Date & Time: 2 2 · 6 · 2 7 / U3 Ø				_Samples Received: Cool of Ambient (circle one) Temperature Received at: ノこ (if applicable)											
Signature: TAM Signature: T							Transp	orted	by: H	and de	livere	1 / courier								

÷.

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

CERTIFICATE OF ANALYSIS 298855

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	N4656-KIWEF
Number of Samples	13 Water
Date samples received	24/06/2022
Date completed instructions received	24/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	01/07/2022				
Date of Issue	01/07/2022				
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 298855 Revision No: R00

Page | 1 of 14

PAHs in Water - Low Level						
Our Reference		298855-1	298855-2	298855-3	298855-4	298855-5
Your Reference	UNITS	E61D	K5/6NN	K5/6N	K5/6S	K5/5S
Date Sampled		22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	87	88	75	93	85

PAHs in Water - Low Level						
Our Reference		298855-6	298855-9	298855-10	298855-11	298855-12
Your Reference	UNITS	K5/5N	K7/1	K7/4N	K7/4S	K7/2S
Date Sampled		22/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Naphthalene	µg/L	<0.2	3.8	<0.2	<0.2	1
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	0.4	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	0.2
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	0.2	<0.1	<0.1	0.3
Pyrene	µg/L	<0.1	0.2	<0.1	<0.1	0.3
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	0.2
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	4.6	<0.1	<0.1	2.3
Surrogate p-Terphenyl-d14	%	88	71	89	82	77

PAHs in Water - Low Level		
Our Reference		298855-13
Your Reference	UNITS	K5/4
Date Sampled		23/06/2022
Type of sample		Water
Date extracted	-	01/07/2022
Date analysed	-	01/07/2022
Naphthalene	μg/L	<0.2
Acenaphthylene	µg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	µg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	µg/L	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5
Total +ve PAH's	µg/L	<0.1
Surrogate p-Terphenyl-d14	%	83

Total Phenolics in Water					
Our Reference		298855-1	298855-2	298855-3	298855-4
Your Reference	UNITS	E61D	K5/6NN	K5/6N	K5/6S
Date Sampled		22/06/2022	22/06/2022	22/06/2022	22/06/2022
Type of sample		Water	Water	Water	Water
Date extracted	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Date analysed	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05
Total Phenolics in Water					
Our Reference		298855-10	298855-11	298855-12	298855-13
Your Reference	UNITS	K7/4N	K7/4S	K7/2S	K5/4
Date Sampled		23/06/2022	23/06/2022	23/06/2022	23/06/2022
Type of sample		Water	Water	Water	Water
Date extracted	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Date analysed	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		298855-1	298855-7	298855-8	298855-9	298855-10
Your Reference	UNITS	E61D	Rinsate 3	Rinsate 4	K7/1	K7/4N
Date Sampled		22/06/2022	22/06/2022	23/06/2022	23/06/2022	23/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Date analysed	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Arsenic-Dissolved	µg/L	[NA]	<1	<1	[NA]	[NA]
Cadmium-Dissolved	µg/L	[NA]	<0.1	<0.1	[NA]	[NA]
Chromium-Dissolved	µg/L	[NA]	<1	<1	[NA]	[NA]
Copper-Dissolved	µg/L	[NA]	<1	<1	[NA]	[NA]
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	[NA]	<0.05	<0.05	[NA]	[NA]
Nickel-Dissolved	µg/L	[NA]	<1	<1	[NA]	[NA]
Zinc-Dissolved	µg/L	[NA]	<1	<1	[NA]	[NA]
Molybdenum-Dissolved	µg/L	3	<1	<1	280	31

HM in water - dissolved		
Our Reference		298855-11
Your Reference	UNITS	K7/4S
Date Sampled		23/06/2022
Type of sample		Water
Date prepared	-	28/06/2022
Date analysed	-	28/06/2022
Lead-Dissolved	μg/L	<1
Molybdenum-Dissolved	µg/L	3

Miscellaneous Inorganics						
Our Reference		298855-1	298855-2	298855-3	298855-4	298855-5
Your Reference	UNITS	E61D	K5/6NN	K5/6N	K5/6S	K5/5S
Date Sampled		22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Total Cyanide	mg/L	<0.004	0.004	0.011	0.005	[NA]
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	[NA]
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	[NA]
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	3.1	0.72	0.65	0.40	0.93

Miscellaneous Inorganics						
Our Reference		298855-6	298855-7	298855-8	298855-9	298855-10
Your Reference	UNITS	K5/5N	Rinsate 3	Rinsate 4	K7/1	K7/4N
Date Sampled		22/06/2022	22/06/2022	23/06/2022	23/06/2022	23/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Total Cyanide	mg/L	0.006	[NA]	[NA]	0.038	0.18
Free Cyanide in Water	mg/L	<0.004	[NA]	[NA]	<0.004	<0.004
Weak Acid Dissociable Cyanide	mg/L	<0.004	[NA]	[NA]	<0.004	0.004
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	[NA]	[NA]	<0.005	<0.005
Ammonia as N in water	mg/L	0.01	[NA]	[NA]	6.7	11

Miscellaneous Inorganics				
Our Reference		298855-11	298855-12	298855-13
Your Reference	UNITS	K7/4S	K7/2S	K5/4
Date Sampled		23/06/2022	23/06/2022	23/06/2022
Type of sample		Water	Water	Water
Date prepared	-	24/06/2022	24/06/2022	24/06/2022
Date analysed	-	24/06/2022	24/06/2022	24/06/2022
Total Cyanide	mg/L	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	0.63	20	0.084

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	ITROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	
Date extracted	-			01/07/2022	2	01/07/2022	01/07/2022		01/07/2022	
Date analysed	-			01/07/2022	2	01/07/2022	01/07/2022		01/07/2022	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	103	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	95	
Fluorene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	95	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	108	
Anthracene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	106	
Pyrene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	111	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	93	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	102	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	87	2	88	76	15	88	

QUALITY CON	ITROL: PAH	s in Wate	r - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	298855-3
Date extracted	-			[NT]	10	01/07/2022	01/07/2022		[NT]	01/07/2022
Date analysed	-			[NT]	10	01/07/2022	01/07/2022		[NT]	01/07/2022
Naphthalene	µg/L	0.2	Org-022/025	[NT]	10	<0.2	<0.2	0	[NT]	101
Acenaphthylene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	97
Fluorene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	99
Phenanthrene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	112
Anthracene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	110
Pyrene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	115
Benzo(a)anthracene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Chrysene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	93
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	[NT]	10	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	96
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	10	89	82	8	[NT]	85

QUALITY CO	NTROL: Tot	al Phenol		Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298855-2
Date extracted	-			28/06/2022	1	28/06/2022 28/06/2022			28/06/2022	28/06/2022
Date analysed	-			28/06/2022	1	28/06/2022	28/06/2022		28/06/2022	28/06/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05 <0.05		0	100	99
		al Dhanal	line in Mater			Du	uliante		Onite De	
QUALITY CO	NTROL: TO	al Pheno	ics in water			Du	plicate		<u> </u>	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]

Inorg-031

28/06/2022

28/06/2022

<0.05

11

11

11

28/06/2022

28/06/2022

Date extracted

Date analysed

Total Phenolics (as Phenol)

-

-

mg/L

0.05

QUALITY CC	NTROL: HN	1 in water		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			28/06/2022	1	28/06/2022	28/06/2022		28/06/2022	
Date analysed	-			28/06/2022	1	28/06/2022	28/06/2022		28/06/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	104	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	105	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	101	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Molybdenum-Dissolved	µg/L	1	Metals-022	<1	1	3	2	40	104	

QUALITY CO	NTROL: Mis	cellaneou		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298855-2
Date prepared	-			24/06/2022	1	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Date analysed	-			24/06/2022	1	24/06/2022	24/06/2022		24/06/2022	24/06/2022
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	97	95
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	96	97
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	93	90
Hexavalent Chromium, Cr6+	mg/L	0.005	Inorg-024	<0.005	1	<0.005	<0.005	0	102	92
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	3.1	3.1	0	96	116

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	24/06/2022	24/06/2022		[NT]		
Date analysed	-				11	24/06/2022	24/06/2022		[NT]		
Total Cyanide	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]		
Free Cyanide in Water	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]		
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014		11	<0.004	[NT]		[NT]		
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024		11	<0.005	<0.005	0	[NT]		
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	11	0.63	0.63	0	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTOR ENVIROLAB GROUP - Natio ENVIROLAB GROUP - Natio Client: Hazmat Services Contact Person: Florence Archer Project Mgr: Florence Archer Sampler: FA/DH Address: Level 1 45C Fitzroy Street Carrington NSW 2294						Y - Client AP Ial phone number 1300 42 43 44 Client Project Name / Number / Site etc (ie report title): N4656 - KIWEF PO No.: Envirolab Quote No. : 16SY078 Date results required: Or choose: Standard/ same day / 1 day / 2 day / 3 day Note: Inform tab in advance if urgent turnaround is required - surcharges apoly									<u>Sydney</u> 12 Ash Ph 02 9 <u>Perth 1</u> 16-18 H Ph 08 9 <u>Melbou</u> 1A Dah Ph 03 9 <u>Brisbar</u> 20a, 10 Ph 07 3	Syntey Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au Perth Lab - MPL Laboratories 16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / lab@mpl.com.au Melbourne Lab - Envirolab Services 1A Dalmore Drive Scoresby VIC 3179 Ph 03 9763 2500 / melbourne@envirolab.com.au Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au				
Phone:	02 49611887	Mob:	0438	246996	Repor	t form	at: esda	at / equ	lis /	_		-			7a The	Parade	, Norwoo	d, SA 50	167	
Email:	floronco or	ahar@ha=	motocnicco co	~ ~ ~		omme	11634								Ph 040	6 350 7	06 / ade	aide@e	nvirolab.com.au	
	<u>norence.ar</u>	cher(@naz	ion	<u>n.au</u>							 To	ete Pan	virad	-					Comments	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Ammonia	Phenois	Free-Cyanide/Total cyanide/dissolved cyanide	Hexavalent Chromium	Molybdenum	Lead	РАН	Free Cyanide/Dissovled Cyanide	BTEX	Heavy Metals (standard 8 + molybdenum)					Provide as much information about the sample as you can	
]	E61D		22/06/2022	Water	X	X	X	Х	Х	х	Х									
2	K5/6NN		22/06/2022	Water	X	х	Х	Х			Х									
2	K5/6N		22/06/2022	Water	X	X	х	х			х							1 98	Envirolab Sei	
4	K5/6S		22/06/2022	Water	x	x	X	X			х					_		1	Ciate & Software 2001	
5	K5/5S		22/06/2022	Water	Х			X			х						J <u>þb N</u>	0:	P11: (02) 9910 6200	
Ь	K5/5N		22/06/2022	Water	X		X	X			х							.20	BBSS	
7	Rinsate 3		22/06/2022	Water							-			X			Time D	eceivec	29.6.22	
9	Rinsate 4		23/06/2022	Water							-			X			Receive	dby:		
9-	K7/1	1 -	23/06/2022	Water	Х	x	x	х	x _	х	х						Temp:	UnI/An	iblent	
ιÓ	K7/4N		23/06/2022	Water	X	x	X	X	X	X	х						Copling	(e/)	pack	
11	K7/4S		23/06/2022	Water	X	x	X	Х	x	х	x						security	: Intact/	Broke-'	
12	K7/2S		23/06/2022	Water	х	x	X	х			Х									
12	K5/4		23/06/2022	Water	x		x	х			х									
Relinquished by (Company): Hazmat Services Print Name: Damien Hendrickx Date & Time: 23/06/2022 Signature:				Recei Print Date Signa	Received by (Company): ELS SYDNEY Print Name: SHAW Date & Time: 27 · (0 7072 1645 Signature:						Lab use only: Samples Received: Cool or Ambient (circle one) Temperature Received at: 10 (if applicable) Transported by: Hand delivered / courier									

....

۰.

~

•

<u>. 1</u>5

-

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

CERTIFICATE OF ANALYSIS 299097

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>N4656 - KIWEF</u>
Number of Samples	11 Water
Date samples received	28/06/2022
Date completed instructions received	28/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	05/07/2022			
Date of Issue	05/07/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 299097 Revision No: R00

Page | 1 of 13

PAHs in Water - Low Level						
Our Reference		299097-1	299097-2	299097-3	299097-4	299097-5
Your Reference	UNITS	K8/5W	K8/5E	K9/4W	K9/4E	K9/2W
Date Sampled		24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Date analysed	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Naphthalene	µg/L	<0.2	2.1	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.9	1.4	<0.1	<0.1	<0.1
Fluorene	µg/L	0.6	0.6	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.7	1.2	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.3	0.5	<0.1	<0.1	<0.1
Pyrene	µg/L	0.2	1.3	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	2.8	7.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	91	83	98	90	96
PAHs in Water - Low Level				_		
---------------------------	-------	------------	------------	------------	------------	
Our Reference		299097-6	299097-9	299097-10	299097-11	
Your Reference	UNITS	K9/2E	BH21S	344A	344B	
Date Sampled		24/06/2022	27/06/2022	27/06/2022	27/06/2022	
Type of sample		Water	Water	Water	Water	
Date extracted	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	
Date analysed	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	
Naphthalene	μg/L	<0.2	210	<0.2	<0.2	
Acenaphthylene	µg/L	<0.1	2.6	<0.1	<0.1	
Acenaphthene	μg/L	<0.1	3.7	<0.1	<0.1	
Fluorene	μg/L	<0.1	3.0	<0.1	<0.1	
Phenanthrene	μg/L	<0.1	10	<0.1	<0.1	
Anthracene	µg/L	<0.1	2.8	<0.1	<0.1	
Fluoranthene	μg/L	<0.1	4.4	<0.1	<0.1	
Pyrene	µg/L	<0.1	3.6	<0.1	<0.1	
Benzo(a)anthracene	μg/L	<0.1	0.8	<0.1	<0.1	
Chrysene	µg/L	<0.1	0.6	<0.1	<0.1	
Benzo(b,j+k)fluoranthene	µg/L	<0.2	0.9	<0.2	<0.2	
Benzo(a)pyrene	µg/L	<0.1	0.6	<0.1	<0.1	
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	0.3	<0.1	<0.1	
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	
Benzo(g,h,i)perylene	µg/L	<0.1	0.4	<0.1	<0.1	
Benzo(a)pyrene TEQ	µg/L	<0.5	0.8	<0.5	<0.5	
Total +ve PAH's	µg/L	<0.1	240	<0.1	<0.1	
Surrogate p-Terphenyl-d14	%	96	92	96	91	

Total Phenolics in Water						
Our Reference		299097-1	299097-2	299097-9	299097-10	299097-11
Your Reference	UNITS	K8/5W	K8/5E	BH21S	344A	344B
Date Sampled		24/06/2022	24/06/2022	27/06/2022	27/06/2022	27/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Date analysed	-	29/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		299097-1	299097-2	299097-5	299097-6	299097-7
Your Reference	UNITS	K8/5W	K8/5E	K9/2W	K9/2E	Rinsate 5
Date Sampled		24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Arsenic-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Cadmium-Dissolved	μg/L	[NA]	[NA]	[NA]	[NA]	<0.1
Chromium-Dissolved	μg/L	[NA]	[NA]	[NA]	[NA]	<1
Copper-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Lead-Dissolved	μg/L	<1	<1	[NA]	[NA]	<1
Mercury-Dissolved	μg/L	[NA]	[NA]	[NA]	[NA]	<0.05
Nickel-Dissolved	μg/L	[NA]	[NA]	[NA]	[NA]	<1
Zinc-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Molybdenum-Dissolved	µg/L	34	37	18	2	<1

HM in water - dissolved					
Our Reference		299097-8	299097-9	299097-10	299097-11
Your Reference	UNITS	Rinsate 6	BH21S	344A	344B
Date Sampled		27/06/2022	27/06/2022	27/06/2022	27/06/2022
Type of sample		Water	Water	Water	Water
Date prepared	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Arsenic-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Cadmium-Dissolved	µg/L	<0.1	[NA]	[NA]	[NA]
Chromium-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Copper-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	[NA]	[NA]	[NA]
Nickel-Dissolved	μg/L	<1	[NA]	[NA]	[NA]
Zinc-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Molybdenum-Dissolved	μg/L	<1	540	2	1

Miscellaneous Inorganics						
Our Reference		299097-1	299097-2	299097-3	299097-4	299097-5
Your Reference	UNITS	K8/5W	K8/5E	K9/4W	K9/4E	K9/2W
Date Sampled		24/06/2022	24/06/2022	24/06/2022	24/06/2022	24/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Date analysed	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	mg/L	0.064	0.038	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	5.2	0.98	1.0	2.2	0.67
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

miscellaneous inorganics					
Our Reference		299097-6	299097-9	299097-10	299097-11
Your Reference	UNITS	K9/2E	BH21S	344A	344B
Date Sampled		24/06/2022	27/06/2022	27/06/2022	27/06/2022
Type of sample		Water	Water	Water	Water
Date prepared	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Date analysed	-	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004
Total Cyanide	mg/L	<0.004	0.21	0.012	0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	3.7	7.5	0.37	3.0
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	ITROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			05/07/2022	1	05/07/2022	05/07/2022		05/07/2022	[NT]
Date analysed	-			05/07/2022	1	05/07/2022	05/07/2022		05/07/2022	[NT]
Naphthalene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	103	[NT]
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	0.9	0.8	12	107	[NT]
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	0.6	0.6	0	109	[NT]
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	0.7	0.8	13	124	[NT]
Anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	1	0.3	0.2	40	108	[NT]
Pyrene	µg/L	0.1	Org-022/025	<0.1	1	0.2	0.2	0	119	[NT]
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	[NT]
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	128	[NT]
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	100	1	91	96	5	101	[NT]

QUALITY CO	QUALITY CONTROL: Total Phenolics in Water						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299097-2
Date extracted	-			29/06/2022	1	29/06/2022	29/06/2022		29/06/2022	29/06/2022
Date analysed	-			29/06/2022	1	29/06/2022	29/06/2022		29/06/2022	29/06/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	102	100

QUALITY CC	QUALITY CONTROL: HM in water - dissolved								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299097-2
Date prepared	-			01/07/2022	1	01/07/2022	01/07/2022		01/07/2022	01/07/2022
Date analysed	-			01/07/2022	1	01/07/2022	01/07/2022		01/07/2022	01/07/2022
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	107
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	103	108
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	102
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	100
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	106	103
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	97	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	101
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	102
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	34	37	8	97	101

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299097-2
Date prepared	-			28/06/2022	1	28/06/2022	28/06/2022		28/06/2022	28/06/2022
Date analysed	-			28/06/2022	1	28/06/2022	28/06/2022		28/06/2022	28/06/2022
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	98	95
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	0.064	0.066	3	99	99
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	95	92
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	5.2	5.3	2	106	113
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	1	<0.005	<0.005	0	95	100

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Control	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ENVIR	ОСАВ	CHA	IN OF	CUSTO	ΟY	- C	lier	nt					-		<u>Sve</u> 12 Ph	dney Lat Ashley S 02 9910	<u>-</u> - Env St, Cha) 6200	irolab S itswood / sydna	ervices , NSW 2 ev@envi	067 irolab.com.au
GROU	ン	ENVI	ROLAB GR	OUP - Nation	nal ph	one i	numbe	r 130	0 42	43 44	Ļ				Pe	rthlab-	MPL	ahorati	nies	
Client: Hazm	at Services				Client	Proje	ct Name	/ Nun	nber /	Site et	c (ie r	enort tit	le):		16-	-18 Hayo	len Cr	t Myare	e, WA 6	154
Contact Pers	ion: Florence Archer				1			,	N465	5 - KIV	VEF				የ ከ	08 9317	2505	/ lab@	mpl.con	n.au
Project Mar:	Florence Archer				PO N	n.:									Me	elbourne	<u>- Lab</u>	Envirola	ab Servio	ces
Sampler: FA	/DH				Envir	olab O	uote No.	:	_		1	65Y078		<u>-</u>	- 1A Ph	Dalmor 03 9763	e Driv 2500	e Scores / meibo	by VIC 3	179 envirolab.com.au
Address: Lev	el 1 45C Fitzrov Street C	arrington NS	W 2294		Date	result	s require	d:							1		2000	,	ameer	
		-			Or ch Note:	oose: Inform	standar lab in ad) san vance il	n e day f <i>urgeni</i>	/ 1 da t <i>turnar</i> i	y / 2 c ound is	lay / 3 d s required	l ay ' - surci	harges	<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3265 9532 / brisbane@envirolab.com.au			ces 4014 virolab.com.au		
Phone:	02 49611887	Mob:	0438	246996	Repo	rt form	nat: esda	t / equ	ıis /				-		Ad	elaide O	ffice -	Envirol	ab Servi	ces
Email:	florence a	ircher@baz	matservices cor	m au	Lab C	omme	nts:					_			 7a The Parade, Norwood, SA 5067 Ph 0406 350 706 / adelaide@envirolab.com.au 			i7 virolab.com.au		
	Sam	ple informat	tion		1						Τe	ests Rea	uired	_	I.					Comments
<u> </u>					1	<u> </u>	द्र य				<u>_</u>	R R		ĺ		ſ			-	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Ammonia	Phenols	Free Cyanide/To cyanide/dissolve cyanide	Hexavalent Chromium	Molybdenum	Lead	РАН	Free Cyanide/Dissovle Cvanide	BTEX	Heavy Metals (standard 8 + molybdenum)						Provide as much information about the sample as you can
	K8/5W		24/06/2022	Water .	х	X	X	X	x	X	X									
2	K8/5E		24/06/2022	Water	х	X	X	x	х	x	х									
3	K9/4W		24/06/2022	Water	х		X	X	_	_	X									
_ لن	K9/4E		24/06/2022	Water	X		x	x			x						A.		E.W.	12 Ashley St
5	K9/2W		24/06/2022	Water	х		X	х	х		X					۲ ۲	لا ان ان انکاری مصنوع م		hatswo	od NSW 2057
م	K9/2E		24/06/2022	Water	Х		X	x	x		x		•				 الماما	lo" a	- PN: (02) 9910 6200
7	Rinsate 5		24/06/2022	Water										X			1001	1 0.	p.6	299097
8	Rinsate 6		27/06/2022	Water		T								X		1	Date	Receive	d:	28/06/22
9	BH21S		27/06/2022	Water	х	X	X	х	х	x	X				l î		lime Rooni	Receiv	ed: .	
{U	344A		27/06/2022	Water	Х	X	X	х	X	X	X						lemn:		0-i	
11	344B	•	27/06/2022	Water	Х	X	x	x	X	X	X					C	Coolin	ilee/	benack	
																S	Securi	ly: Inta	1/Brow	
							1					T - ''				•				
	2						1												ľ	
Relinquished	 I by (Company):	Hazmat S	ervices		Recei	ved by	(Compa	ny):		Ē	55	Yn		·	Lab use	e only:				
Print Name:	Damien Hendrickx				Print	Name	<u> </u>	hu	3+11	r					Sample	es Rece	ived	(ioo)	Amb	ient (circle one)
Date & Time	27/06/2032		<u> </u>		Date	& Time	21	281	066	n			(01	/0	Tempe	rature	Rece	ived at	: - ()	💛 (if applicable)
Signaturo :	del I	12			Signa	ture:			A e				-		Transp	orted b	y: H	and de	livere	d / courier

,

-

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 299478

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>N4656 - KIWEF</u>
Number of Samples	12 Water
Date samples received	01/07/2022
Date completed instructions received	01/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	08/07/2022
Date of Issue	08/07/2022
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 299478 Revision No: R00

Page | 1 of 14

PAHs in Water - Low Level						
Our Reference		299478-1	299478-2	299478-3	299478-4	299478-5
Your Reference	UNITS	336A	336B	K11/3W	K11/3E	QC2
Date Sampled		28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	08/07/2022	08/07/2022	08/07/2022	08/07/2022	08/07/2022
Date analysed	-	08/07/2022	08/07/2022	08/07/2022	08/07/2022	08/07/2022
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	84	82	75	80	81

PAHs in Water - Low Level						
Our Reference		299478-8	299478-9	299478-10	299478-11	299478-12
Your Reference	UNITS	K12/10	K12/10E	K12/7E	NCIG1	NCIG2
Date Sampled		29/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	08/07/2022	08/07/2022	08/07/2022	08/07/2022	08/07/2022
Date analysed	-	08/07/2022	08/07/2022	08/07/2022	08/07/2022	08/07/2022
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	0.8	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	0.7	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	1.5	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	94	90	78	88	80

Total Phenolics in Water						
Our Reference		299478-1	299478-2	299478-3	299478-4	299478-5
Your Reference	UNITS	336A	336B	K11/3W	K11/3E	QC2
Date Sampled		28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Date analysed	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Total Phenolics in Water						
Our Reference		299478-8	299478-9	299478-10	299478-11	299478-12
Your Reference	UNITS	K12/10	K12/10E	K12/7E	NCIG1	NCIG2
Date Sampled		29/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Date analysed	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		299478-1	299478-2	299478-3	299478-4	299478-5
Your Reference	UNITS	336A	336B	K11/3W	K11/3E	QC2
Date Sampled		28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Date analysed	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Molybdenum-Dissolved	µg/L	2	<1	<1	4	<1
HM in water - dissolved						
Our Reference		299478-6	299478-7	299478-8	299478-9	299478-10
Your Reference	UNITS	Rinsate 7	Rinsate 8	K12/10	K12/10E	K12/7E
Date Sampled		28/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/07/2022	05/07/2022	05/07/2022	05/07/2022	05/07/2022
Date analysed	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022
Arsenic-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
Cadmium-Dissolved	µg/L	<0.1	<0.1	[NA]	[NA]	[NA]
Chromium-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
Copper-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	[NA]	[NA]	[NA]
Nickel-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
Zinc-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
Molybdenum-Dissolved	µg/L	<1	<1	1	<1	2

HM in water - dissolved			
Our Reference		299478-11	299478-12
Your Reference	UNITS	NCIG1	NCIG2
Date Sampled		29/06/2022	29/06/2022
Type of sample		Water	Water
Date prepared	-	05/07/2022	05/07/2022
Date analysed	-	06/07/2022	06/07/2022
Lead-Dissolved	µg/L	<1	<1
Molybdenum-Dissolved	µg/L	9	1

Miscellaneous Inorganics						
Our Reference		299478-1	299478-2	299478-3	299478-4	299478-5
Your Reference	UNITS	336A	336B	K11/3W	K11/3E	QC2
Date Sampled		28/06/2022	28/06/2022	28/06/2022	28/06/2022	28/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	mg/L	<0.004	<0.004	0.009	<0.004	0.008
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	0.83	0.58	5.6	0.50	5.7
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics						
Our Reference		299478-8	299478-9	299478-10	299478-11	299478-12
Your Reference	UNITS	K12/10	K12/10E	K12/7E	NCIG1	NCIG2
Date Sampled		29/06/2022	29/06/2022	29/06/2022	29/06/2022	29/06/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Date analysed	-	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Total Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	5.1	1.2	20	0.58	29
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	ITROL: PAH	ls in Wate		Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			08/07/2022	1	08/07/2022	08/07/2022		08/07/2022	[NT]
Date analysed	-			08/07/2022	1	08/07/2022	08/07/2022		08/07/2022	[NT]
Naphthalene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	90	[NT]
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	[NT]
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	[NT]
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	[NT]
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	[NT]
Pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	[NT]
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	[NT]
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	[NT]
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	81	1	84	83	1	81	[NT]

QUALITY CO	NTROL: Tot	al Phenol		Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299478-2
Date extracted	-			05/07/2022	1	05/07/2022	05/07/2022		05/07/2022	05/07/2022
Date analysed	-			05/07/2022	1	05/07/2022	05/07/2022		05/07/2022	05/07/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	102	102

QUALITY CC	NTROL: HM	1 in water		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	299478-2
Date prepared	-			06/07/2022	1	05/07/2022	05/07/2022		06/07/2022	06/07/2022
Date analysed	-			06/07/2022	1	06/07/2022	06/07/2022		06/07/2022	06/07/2022
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	103	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	106	92
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	86	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	[NT]
Molybdenum-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	95	97

QUALITY CO	NTROL: Mis	cellaneou		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299478-2
Date prepared	-			01/07/2022	1	01/07/2022	01/07/2022		01/07/2022	01/07/2022
Date analysed	-			01/07/2022	1	01/07/2022	01/07/2022		01/07/2022	01/07/2022
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	110	91
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	95	86
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	104	104
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.83	0.84	1	103	115
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	1	<0.005	<0.005	0	115	103

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PAHs in Water - Low Level - The PQL has been raised due to interferences from analytes (other than those being tested) in sample/s 299478-10.

CHAIN OF CUSTODY - Clie										12.44					<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au					2067 irolab.com.au
		EINAT		OUP - Nation	lai ph	one r	number	1300	J 42 4	13 44	- (1		<u> </u>			<u>erth Lac</u> 6-18 Ha	<u>y</u> den Cr	Laborat t Myare	ories e, WA 6	154
Client: Hazm					Client	: Proje	ст мате	/ Num	ber / S	site et	c (le re	port titi	e):		P	Ph 08 9317 2505 / lab@mpl.com.au			n.au	
Contact Pers	son: Florence Archer								N4650) - KIW	/cr				⊻	leiboun	ne Lab -	Envirol	ab Servi	Ces
Project Mgr:	Florence Archer			<u> </u>).; 						CO1070			1/ Pi	A Dalmı h 03 97(ore Driv 63 2500	re Score: I / melbe	sby ViC 3 ourne@(3179 envirolab.com.au
Sampler: FA					Date	nab Qi	uote No. require	: d:			1	65YU/8								
Address: Lev	vel 1 45C Hizroy Street Ca	rrington NS	w 2294		Or choose: (standard) same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges								Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au Adelaide Office - Envirolab Services				<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au Adelaida Offico - Envirolab Sonvices			
Phone:	02 49611887	Mob:	0438	246996	Repor	t form	at: esda	t / equ	is /					<u>.</u>	7.	a The Pa	arade, N	iorwood	l, SA 506	67
Email:					Lab C	omme	nts:								P	h 0406 3	350 706	i/ adela	aide@en	wirolab.com.au
	florence.ar	cher@haz	matservices.com	m.au											L					
	Samp	ole informat	ion	t	L	-				-	Te	sts Req	uired	<u> </u>					T	Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled -	<u>Type of sample</u>	Ammonia	Phenols	Free Cyanide/Total cyanide/dissolved cyanide	Hexavalent Chromium	Molybdenum	Lead	PAH	Free Cyanide/Dissovled Cvanide	втех	Heavy Metals (standard 8 + molybdenum)						Provide as much information about the sample as you can
J	336A		28/06/2022	Water	X	X	X	X	х	х	X		_					-		
2	336B		28/06/2022	Water	х	x	X	X	х	х	x									
- 3	K11/3W		28/06/2022	Water	X	x	×	X	х	x	x					_	-			Fryger and the
4	K11/3E		28/06/2022	Water	х	۰x	X	х	х	х	x	Ţ					3		88	12 Astrony St
5	QC2		28/06/2022	Water	Χ.	X	X	X	х	х	X							\sim	-	Ph: (02) 9010 2087
6	Rinsate 7		28/06/2022	Water ·			-							X			<u> </u>	<u>ed No</u>	5	299 475
-7	Rinsate 8		29/06/2022	Water ,	 									X			D	te Rer	Aived	1/7/22
8	K12/10		29/06/2022	Water	X	x	x	x	х	x	X						Tu	ne Rec	eived:	1310
9	K12/10E		29/06/2022	Water	X	X	X	X	х	X	X						ne Te	Ceived	By:	·KW
10	K12/7E		29/06/2022	Water	X	x	X	x	x	x	πX			-			Co	ling	Ambi	ent,
	NCIG1		29/06/2022	Water	X	x	x	x	x	X	X			1			ઈસ્ટ	unity. 1:	5	
12	NCIG2		29/06/2022	Water	x	x	X	x	x	x	x									
(1	<u> </u>	<u> </u>	1	1	1			1				<u> </u>				1		
						1								1 -				1		
Relinquishe Print Name: Date & Time	d by (Company): Damien Hendrickx	Hazmat Se	ervices	· · · · · · · · · · · · · · · · · · ·	Recei Print Date	ved by Name: & Time	(Compa : よい : よい	ny): 1y (1/22	ELS	<u></u>	ID	- 	310		<i>Lab us</i> Sample Tempe	<i>se only</i> es Rec erature	eived; Recei	Cool o	Ambi	ient (circle one)
Signature:					Signa	ture:	/								Trans	ported	by: H	and de	livered	l / courier
					-			_				_		011						

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

چې ·

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 299656

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>N4656 - KIWEF</u>
Number of Samples	9 Water
Date samples received	05/07/2022
Date completed instructions received	05/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	12/07/2022						
Date of Issue	12/07/2022						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Hannah Nguyen, Metals Supervisor Kyle Gavrily, Senior Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 299656 Revision No: R00

Page | 1 of 14

PAHs in Water - Low Level						
Our Reference		299656-1	299656-2	299656-3	299656-4	299656-7
Your Reference	UNITS	K12/1W	K12/4N	KS12/6	K12/7	K10/2
Date Sampled		1/07/2022	1/07/2022	1/07/2022	1/07/2022	4/07/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/07/2022	11/07/2022	11/07/2022	11/07/2022	11/07/2022
Date analysed	-	11/07/2022	11/07/2022	11/07/2022	11/07/2022	11/07/2022
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	68	81	67	73	79

PAHs in Water - Low Level			
Our Reference		299656-8	299656-9
Your Reference	UNITS	K10/2N	K10/2NN
Date Sampled		4/07/2022	4/07/2022
Type of sample		Water	Water
Date extracted	-	11/07/2022	11/07/2022
Date analysed	-	11/07/2022	11/07/2022
Naphthalene	μg/L	<0.2	8.3
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	8.3
Surrogate p-Terphenyl-d14	%	66	72

Total Phenolics in Water						
Our Reference		299656-1	299656-2	299656-3	299656-4	299656-8
Your Reference	UNITS	K12/1W	K12/4N	KS12/6	K12/7	K10/2N
Date Sampled		1/07/2022	1/07/2022	1/07/2022	1/07/2022	4/07/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022
Date analysed	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved						
Our Reference		299656-1	299656-2	299656-3	299656-4	299656-5
Your Reference	UNITS	K12/1W	K12/4N	KS12/6	K12/7	Rinsate 9
Date Sampled		1/07/2022	1/07/2022	1/07/2022	1/07/2022	1/07/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/07/2022	07/07/2022	07/07/2022	07/07/2022	07/07/2022
Date analysed	-	07/07/2022	07/07/2022	07/07/2022	07/07/2022	07/07/2022
Arsenic-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Cadmium-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<0.1
Chromium-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Copper-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Lead-Dissolved	µg/L	1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<0.05
Nickel-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Zinc-Dissolved	µg/L	[NA]	[NA]	[NA]	[NA]	<1
Molybdenum-Dissolved	µg/L	3	1	1	<1	<1

HM in water - dissolved					
Our Reference		299656-6	299656-7	299656-8	299656-9
Your Reference	UNITS	Rinsate 10	K10/2	K10/2N	K10/2NN
Date Sampled		4/07/2022	4/07/2022	4/07/2022	4/07/2022
Type of sample		Water	Water	Water	Water
Date prepared	-	07/07/2022	07/07/2022	07/07/2022	07/07/2022
Date analysed	-	07/07/2022	07/07/2022	07/07/2022	07/07/2022
Arsenic-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Cadmium-Dissolved	µg/L	<0.1	[NA]	[NA]	[NA]
Chromium-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Copper-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	[NA]	[NA]	[NA]
Nickel-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Zinc-Dissolved	µg/L	<1	[NA]	[NA]	[NA]
Molybdenum-Dissolved	μg/L	<1	3	8	<1

Miscellaneous Inorganics										
Our Reference		299656-1	299656-2	299656-3	299656-4	299656-7				
Your Reference	UNITS	K12/1W	K12/4N	KS12/6	K12/7	K10/2				
Date Sampled		1/07/2022	1/07/2022	1/07/2022	1/07/2022	4/07/2022				
Type of sample		Water	Water	Water	Water	Water				
Date prepared	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022				
Date analysed	-	06/07/2022	06/07/2022	06/07/2022	06/07/2022	06/07/2022				
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	[NA]				
Total Cyanide	mg/L	<0.004	<0.004	<0.004	<0.004	[NA]				
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004	<0.004	[NA]				
Ammonia as N in water	mg/L	0.21	48	0.056	0.25	0.040				
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.050	<0.005	0.01	<0.005	<0.005				

Miscellaneous Inorganics			
Our Reference		299656-8	299656-9
Your Reference	UNITS	K10/2N	K10/2NN
Date Sampled		4/07/2022	4/07/2022
Type of sample		Water	Water
Date prepared	-	06/07/2022	06/07/2022
Date analysed	-	06/07/2022	06/07/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004
Total Cyanide	mg/L	0.007	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004
Ammonia as N in water	mg/L	0.48	7.6
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CONTROL: PAHs in Water - Low Level						Du	Duplicate Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/07/2022	[NT]		[NT]	[NT]	11/07/2022	
Date analysed	-			11/07/2022	[NT]		[NT]	[NT]	11/07/2022	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	116	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	105	[NT]	[NT]	[NT]	[NT]	108	[NT]

QUALITY CONTROL: Total Phenolics in Water						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299656-2
Date extracted	-			06/07/2022	1	06/07/2022	06/07/2022		06/07/2022	06/07/2022
Date analysed	-			06/07/2022	1	06/07/2022	06/07/2022		06/07/2022	06/07/2022
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	100	103
QUALITY CC		Du	Spike Recovery %							
----------------------	-------	------	------------------	------------	------	------------	------------	------	------------	------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			07/07/2022	1	07/07/2022	07/07/2022		07/07/2022	
Date analysed	-			07/07/2022	1	07/07/2022	07/07/2022		07/07/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	114	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	112	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	1	<1	0	109	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	101	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	3	2	40	103	

QUALITY CO		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	299656-2
Date prepared	-			06/07/2022	1	06/07/2022	06/07/2022		06/07/2022	06/07/2022
Date analysed	-			06/07/2022	1	06/07/2022	06/07/2022		06/07/2022	06/07/2022
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	99	86
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	100	89
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	98	76
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.21	0.21	0	101	[NT]
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	1	<0.050	<0.05	0	107	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

MISC_INORG: Cr PQL has been raised due to matrix interferences from analytes (other than those being tested) in the sample/s. Samples were diluted and reanalysed however same results were achieved.

CHAIN OF CUSTO				DY	- C	lie	nt							Sv 12 Pl	ydney La 2 Ashley h 02 991	<u>ab</u> - Env y St, Cha 10 6200	rirolab S atswood / sydne	ervices , NSW 2 ey@envi	.067 irolab.com.au	
GROUF		ENVI	ROLAB GR	OUP - Nation	nal ph	onei	numbe	r 130	0 42 -	43 44	ŀ				<u>Perth Lab</u> - MPL Laborātories 16-18 Hayden Crt Myaree, WA 6154					
Client: Harm						Proje	ct Nam	e / Num	her /	Site et	c (ie r	eport title	e).						154	
Contact Pers	on: Elorence Archer								N465	5 - KIV	VEF				.Pi	h 08 931	17 2505	/ lab@	mpl.com	1.80
Project Mar	Elorence Archet		·		PO N	<u> </u>									⊻	leibouri	<u>ne Lab</u> -	Envirola	ab Servio	ces
Sampler: EA	/nu				Envir	niab O	note No				1	65Y078			- 1/ P	A Daime h 03 97f	ore Driv 63 2500	e Scores / melbo	sby VIC 3 ourne@e	/179 envirolab.com.au
Address Lov	el 1 450 Eitzrov Street Ca	rrington NS	W 2294		Date	result	s require	ed:		-		001070						,		
		in ingro			Or che Note: . apply	inform	standar lab in ad	rd san Ivance if	ne day ^f urgeni	/ 1 da turnar	y / 2 d ound is	lay / 3 da required	ay - surch	arges	<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au			ces 9 4014 Ivîrolab.com.au		
Phone:	02 49611887	Mob:	0438	246996	Repor	t forn	nat: esd	at / equ	iis /						A	delaide	Office	- Envirola	ab Servi	ces
Email:					Lab C	omme	ents:									a ine Pa h 0406 3	arade, N 350 706	i/ adela	ide@en	virolab.com.au
	florence.al	rcher@haz	matservices.com	n.au												19 6	÷ .	-	-	
-	Sam	ple_informat	ion				_				Te	sts Requ	ired							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Ammonia	Phenols	Free Cyanide/Total cyanide/dissolved	Hexavalent Chromium	Molybdenum	Lead	РАН	Free Cyanide/Dissovled Cyanide	BTEX	Heavy Metals (standard 8 + molybdenum)		•				Provide as much information about the sample as you can
١.	K12/1W		1/07/2022	Water	X	X	X	Х	X	х	х									
2	K12/4N		1/07/2022	Water	X	Х	X	Х	X	X	X						_			
3.	KS12/6		1/07/2022	Water	х	Х	X	X	x	x	х									
9	K12/7		1/07/2022	Water	х	х	X	_ X	x	X	х									
Ś	Rinsate 9		1/07/2022	Water										X						
19	Rinsate 10		4/07/2022	Water										X						
7	K10/2		4/07/2022	Water	х			х	x	х	х									
8	K10/2N		4/07/2022	Water	Х	X	X	X	x	X	Х						[
9	K10/2NN	-	4/07/2022	Water	х		Х	х	X	x	х					_				
							_													
													_							
											<u> </u>									
Relinquished	i by (Company):	Hazmat S	ervices		Recei	ved by	(Comp	any):		É	S				Lab us	se only	/:		2	29656
Print Name:	Damien Hendrickx				Print	Name	: (1001	Ŧ.						Sampl	les Rec	ceived	: 600)	or Amb	ient (circle one)
Date & Time	: 04/07/2022 / 3	1 1			Date	& Tim	e:	_	5	122		الالوى	5		Temp	eraturo	e Rece	ived at	: (<	⊃ <u>(if applicable)</u>
Signature:	12. 11	$\overline{}$			Signa	ture:		\sim							Trans	ported	by: H	land de	livered	d courier
							P			Whi	ite - L	ab copy	/ Blu	e - Clien	t copy	/ Pink	k - Rei	tain in	Book	Páge No:

-

۰.

.

.

1

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 299973

Client Details	
Client	Hazmat Services
Attention	Florence Archer
Address	PO Box 118, Carrington, NSW, 2294

Sample Details	
Your Reference	<u>N4656 - KIWEF</u>
Number of Samples	4 Water
Date samples received	08/07/2022
Date completed instructions received	08/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	15/07/2022						
Date of Issue	15/07/2022						
NATA Accreditation Number 2901. This do	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Diego Bigolin, Inorganics Supervisor Kyle Gavrily, Senior Chemist Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 299973 Revision No: R00

Page | 1 of 12

PAHs in Water - Low Level				
Our Reference		299973-1	299973-2	299973-3
Your Reference	UNITS	K11/1	K11/1S	QC3
Date Sampled		6/07/2022	6/07/2022	6/07/2022
Type of sample		Water	Water	Water
Date extracted	-	13/07/2022	13/07/2022	13/07/2022
Date analysed	-	14/07/2022	14/07/2022	14/07/2022
Naphthalene	μg/L	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.2	0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	0.19	0.1	<0.1
Surrogate p-Terphenyl-d14	%	83	91	91

Total Phenolics in Water				
Our Reference		299973-1	299973-2	299973-3
Your Reference	UNITS	K11/1	K11/1S	QC3
Date Sampled		6/07/2022	6/07/2022	6/07/2022
Type of sample		Water	Water	Water
Date extracted	-	11/07/2022	11/07/2022	11/07/2022
Date analysed	-	11/07/2022	11/07/2022	11/07/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

HM in water - dissolved					
Our Reference		299973-1	299973-2	299973-3	299973-4
Your Reference	UNITS	K11/1	K11/1S	QC3	Rinsate11
Date Sampled		6/07/2022	6/07/2022	6/07/2022	6/07/2022
Type of sample		Water	Water	Water	Water
Date prepared	-	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Date analysed	-	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Arsenic-Dissolved	µg/L	[NA]	[NA]	[NA]	<1
Cadmium-Dissolved	µg/L	[NA]	[NA]	[NA]	<0.1
Chromium-Dissolved	µg/L	[NA]	[NA]	[NA]	<1
Copper-Dissolved	µg/L	[NA]	[NA]	[NA]	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	[NA]	[NA]	[NA]	<0.05
Nickel-Dissolved	µg/L	[NA]	[NA]	[NA]	<1
Zinc-Dissolved	µg/L	[NA]	[NA]	[NA]	<1
Molybdenum-Dissolved	µg/L	5	<1	<1	<1

Miscellaneous Inorganics				
Our Reference		299973-1	299973-2	299973-3
Your Reference	UNITS	K11/1	K11/1S	QC3
Date Sampled		6/07/2022	6/07/2022	6/07/2022
Type of sample		Water	Water	Water
Date prepared	-	08/07/2022	08/07/2022	08/07/2022
Date analysed	-	08/07/2022	08/07/2022	08/07/2022
Weak Acid Dissociable Cyanide	mg/L	<0.004	<0.004	<0.004
Total Cyanide	mg/L	<0.004	<0.004	<0.004
Free Cyanide in Water	mg/L	<0.004	<0.004	<0.004
Ammonia as N in water	mg/L	0.29	6.6	6.6
Hexavalent Chromium, Cr ⁶⁺	mg/L	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-024	Hexavalent Chromium (Cr6+) - determined colourimetrically. Waters samples are filtered on receipt prior to analysis.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	ITROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			13/07/2022	1	13/07/2022	13/07/2022		13/07/2022	[NT]
Date analysed	-			14/07/2022	1	14/07/2022	14/07/2022		14/07/2022	[NT]
Naphthalene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	88	[NT]
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	[NT]
Fluorene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	[NT]
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	[NT]
Anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	[NT]
Pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	[NT]
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	1	0.2	<0.1	67	[NT]	[NT]
Chrysene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	71	[NT]
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	[NT]
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	87	1	83	86	4	101	[NT]

QUALITY CO	NTROL: Tot	al Phenol		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/07/2022	1	11/07/2022	11/07/2022		11/07/2022	[NT]
Date analysed	-			11/07/2022	1	11/07/2022	11/07/2022		11/07/2022	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	101	[NT]

QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			12/07/2022	1	12/07/2022	12/07/2022		12/07/2022	
Date analysed	-			12/07/2022	1	12/07/2022	12/07/2022		12/07/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	99	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	101	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	106	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Molybdenum-Dissolved	µg/L	1	Metals-022	<1	1	5	5	0	98	

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/07/2022	1	08/07/2022	08/07/2022		08/07/2022	[NT]
Date analysed	-			08/07/2022	1	08/07/2022	08/07/2022		08/07/2022	[NT]
Weak Acid Dissociable Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	98	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	101	[NT]
Free Cyanide in Water	mg/L	0.004	Inorg-014	<0.004	1	<0.004	<0.004	0	100	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.29	[NT]		106	[NT]
Hexavalent Chromium, Cr ⁶⁺	mg/L	0.005	Inorg-024	<0.005	1	<0.005	[NT]		115	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ENVIRO	ENVIROLAB CHAIN OF CUST							nt							Sydn 12 A Ph 02	<u>ey Lab</u> shley St 2 9910 (- Envirolab , Chatswoo 5200 / sydi	Services d, NSW 1ey@en	2067 virolab.com.au
GROUI	ン	ENVI	ROLAB GR	OUP - Natio	nal oh	one r	numbe	r 130	0 42 -	43 44	ţ.				Pert	1 Lab - M	MPL Labora	tories	
Client: Hazm					Client	Proie	ct Name	/ Num	ber /	Site et	- c (ie r	eport title	e):		16-1	8 Hayde	en Crt Mya	ee, WA	6154
Contact Pers	ion: Florence Archer				1			,	N4650	5 - KIV	VEF		-,-		Ph 0	8 9317 4	2505 / Tab(publico	m.au
Project Mar:	Florence Archer				PO No).!							-		Melt	ournel	Lab - Enviro	lab Serv	lices
Campler: FA	/DH				Envir	olah O	uote No				1	6SY078			1 A D Ph 0	almore 3 9763 2	Drive Scor 2500 / mell	esby VIC courne@	3179 Penvirolab.com.au
Address Lev	rei 1 450 Eitzrov Street Ca	rrington NS	W 2294		Date	results	s require	ed:			-				1				
		y			Or ch Note:	oose: (Inform	standar lab in ad) san Ivance if	ie day urgent	/ 1 da turnar	round is	ay / 3 da required	a y - surch	harges	Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 5 Ph 07 3266 9532 / brisbane@envirolab.com.au			ices D 4014 :nvirolab.com.au	
Phone:	02 49611887	Mob:	0438	246996	Repo	rt form	nat: esda	at / equ	is /						Adelaide Office - Envirolab Services				/ices
Email:		·			Lab C	omme	nts:		-						7a Ti Ph 0/	ne Para 106 350	de, Norwo 706 / ade	od, SA 50 laide@e	/67 nvirolah.com.au
	florence.a	rcher@haz	matservices.com	n.au												100 000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	014666	\$25-c
— —	Sam	ple informat	tion								Te	sts Requ	ired		•				Comments
					<u> </u>		ed					ed						ſ	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Ammonia	Phenols	Free Cyanide/To cyanide/dissolv	Hexavalent Chromium	Molybdenum	Lead	РАН	Free Cyanide/Dissov Cyanide	BTEX	Heavy Metals (standard 8 + molybdenum					Provide as much information about the sample as you can
1	K11/1		6/07/2022	Water	X	x	X	X	X	X	x								
2	K11/ <u>1S</u>		6/07/2022	Water	X	X	Х	X	X	X	х							_	
3	QC3		6/07/2022	Water	X	X	x	х	х	X	X						$\square \frown$	\downarrow	Forunt
4	Rinsate 11		6/07/2022	Water							_			x				нв	12.5
					_					_								1	Ph:(02) 9910 5200
																	\	1 73	
					_		_										F		1249473
																_	Lima F	i ceive	1 8.7.2020
	_																1	- I By:	h wvy
																	קון	COOKAr	npient 477
							Г										Coolin	1:100,20	Enner
						-							_				n	V. Intego	BrukenMonn
		<u> </u>															-		
		T																	
Relinquished	i by (Company):	Hazmat S	ervices		Recei	ved by	(Comp	any):	<u></u>	د <u>،</u> ر	40	NEC	1		Lab use	oniy:			
Print Name:	Damien Hendrickx				Print	Name			T	TH1	w				Samples	Receiv	ved: Cool	مر Am	bient (circle one)
Date & Time	: 07/07/2022	- 1			Date	& <u>Tim</u> e	B:	8.9	- Z	Z		1.00	Y Ø		Temperature Received at: (if applicable)				
Signature:	02 /1/	1/1/	γ		Signa	ture:		J.							Transpor	ted by	: Hand c	elivere	d / courier
								T		Whi	ite-Li	ab copy	/ Blu	e - Clien	t copy / I	Pink -	Retain i	n Book	r Page No:

CERTIFICATE OF ANALYSIS

Work Order	ES2221693	Page	: 1 of 5
Client	HAZMAT SERVICES PTY LTD	Laboratory	Environmental Division Sydney
Contact	: FLORENCE ARCHER	Contact	: Customer Services ES
Address	: Level 1 45C Fitzroy St	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Carrington 2294		
Telephone	: +61 2 4961 1887	Telephone	: +61-2-8784 8555
Project	: N4656	Date Samples Received	: 21-Jun-2022 15:29
Order number	:	Date Analysis Commenced	: 22-Jun-2022
C-O-C number	:	Issue Date	: 28-Jun-2022 16:59
Sampler	: FA/DH		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Accorditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 5 Work Order : ES2221693 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC1A	 	
		Samplii	ng date / time	20-Jun-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2221693-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Molybdenum	7439-98-7	0.001	mg/L	0.019	 	
EG050T: Total Hexavalent Chromium						
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	<0.004	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
EK028SF: Weak Acid Dissociable CN by	Seamented Flov	w Analyse	er.			
Weak Acid Dissociable Cyanide		0.004	mg/L	<0.004	 	
EK055G: Ammonia as N by Discrete Ana	lvser					
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	 	
EP075(SIM)A: Phenolic Compounds						
Phenol	108-95-2	1.0	µg/L	<1.0	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	

Page : 4 of 5 Work Order : ES2221693 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC1A	 	
		Sampli	ng date / time	20-Jun-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2221693-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued				
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbor	1S	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP075(SIM)S: Phenolic Compound Su	ırrogates					
Phenol-d6	13127-88-3	1.0	%	27.9	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	61.7	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	62.1	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	72.0	 	
Anthracene-d10	1719-06-8	1.0	%	78.8	 	
4-Terphenyl-d14	1718-51-0	1.0	%	75.1	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)					
Compound	CAS Number	Low	High				
EP075(SIM)S: Phenolic Compound Surrogates							
Phenol-d6	13127-88-3	10	44				
2-Chlorophenol-D4	93951-73-6	14	94				
2.4.6-Tribromophenol	118-79-6	17	125				
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	20	104				
Anthracene-d10	1719-06-8	27	113				
4-Terphenyl-d14	1718-51-0	32	112				

CHAIN OF CUSTODY

ALS Laboratory: plaase tick 🔿

FT Sydney, 217 Worktpark Ro. Smithfold NSW 2176 Ph. 02 8284 8325 E samples sydenyakalsony/orkion Sector Concerns

11 Brisbane C Shard St. Stafford OLD 3053 Fit 67 3243 7222 E samples high aneutrale awar with 1 : Newcastle: 5 Reception Ref. Watabasek NSW 2004 — 21 - Townsville, 14-05 Deans Cf. Bobb QLD 4818 Ph 02 47041 0660 E. How have a second memory in second care.

Helbourne 2-4 Westall Rd. Spinopale VIC 317.1 Ph B (2049 9630 C Shaptes melti-approxitation; no cont Adelaide: 2-1 Buima Rd. Protaka SA 5095 Ph. 09 8350 0850 F. adotade datameter com

14 Porth 10 Hod Way Malaga WA 6000 pt. 08 9209 X655 E. camples pediadatenvil0.000 13 Launcestee, 27 Verlaylon '9 Launcenton TAS 7250 ph. ht 6331 / 158 F. Imacostone2abenvincom

PY 21/6/22 7:30

(ALS)	1. Dendard		TURNARO	UND REQUIREMENTS :	Standar	d TAT (List du	e date):					FOR	LABORAT	ORY USE (NLY (Circle)
LIENT:	Hazmat Services	ton NGW 2204	(Standard TAT	T may be longer for some tests	Non Sta	ndard or urge	nt TAT (List	due date):				Custor	iy Seal Intoc	7		Yes No I
FFICE:	Level 1, 45C Fitzroy Street, Carring	1011 NOW 2294	o.g. Uitra Tra	ice Organics)	SYB0/478		•		COC SEQUENC	E NUMBER	(Circle)	Free id	e / frozen ici	a bricks pres	ont upon	receipt? Yes (No)
ROJECT:	N4129	l	ALS QUOT	1E NU.: 3					1 2	34	56	7 Rando	m Sample T	emporature (n Rocei	Pt D G ¹⁰
RDER NUMBER:			COUNTRY	OF ORIGIN:					1 2	3 4	5 6	7 Other	7 Other comment			
ROJECT MANAGER:	Florence Archer	CONTACT	PH: 02 491188	87					BECCH/ED BY:				HED BY:			RECEIVED BY:
AMPLER:	FA/DH	SAMPLER	MOBILE:		RELINQUIS			NEV.	$\Omega \sim$			R-				
OC Emailed to ALS? (YES / NO)		VAT (or default	it):	Florence Ar	cher		DATE		1529	}	0-V DATE/TIME	, 	700	DATE/TIME:	
mail Reports to : forer	nce.archer@hazmatservices.com.au				DATE/TIME	CAD.			216		•	21/	21/6			
imail Involce to: admin	@hazmatservices.com.au; florence.ar	cher@hazmatservices.com.	au		21/6/22 4	gene	· ·					1				<u> </u>
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	NL:						NO DECIN	PED Including S	UITES IND	Suite Codes	must he listed	to attract su	o price)		
SAMPLE DETAILS CONTAIL					FORMATION		ANALYS	SIS REQUI	RED including o	ufficient holds re	suited) of Dir	a nived (Sold file)	red bottle roqui	ed)	Additional Information	
ALS USE ONLY	ALS USE;ONLY MATRIX: Solid(S) Water(W)				i		When	ero Metals are required, specify Total (unfiltered bottle required) or Dissol								Comments on likely contaminant levels, dilutions, or samples requiring specific QC
LAB ID	LAB ID SAMPLE ID DATE / TIME MATRIX		TYPE & PRESERVA (refer to codes belo	N TIVE ow)	TOTAL BOTTLES	mmonia	ltenois	ree Cyanic fotal Cyanic tissotved Cyanice	Hexavalent Chromiun	Molybdenu	Load	Total PAH	BTEX	Hdl	anelysis etc.	
							× ×	<u>~</u>	X	X	x	x	x			
	QC1A	20/06/2022	Water										-	-		
				,												
											ļ		1	1	1	
													Envi	ronme	ntal I	Division
													Sydr	iey wk Orde	r Bef	erence
													F	S22	うつ	1693
													سا	.024	, <u></u>	
									RIGI	A .						WT
								0	FULTI	E					(kt)	
							\	100	HCA312	· ·		_				
								NE	111-							
									and the second			1	<i>9</i> 6']]]]		
									. 6				Teleph	one : - 61	2-8764	8200
								,15		Constant of the second se	+		T			
							at the	1 the state	and the second second				•			
				1	Tinta		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1987 - Marine Marine	-							
							(hor Glass Lington	vad: AP - Airfi	olaht Unore	sorved Plastic			<u> </u>	<u>]</u>
A CONTRACTOR OF	Construction of the constr		1000 011	In Cadlum Hudrovide/Cd Prosen			mon/off H(88)	and the second sec	TOTAL CONCERNMENTING OF		and the second sec					

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterilio Bottle; ASS = Plastic Bag for Acid Sutphate Soils; B = Unpreserved Bag

ėv.

Approved Data, GROZTOLO

CERTIFICATE OF ANALYSIS

Work Order	ES2223035	Page	: 1 of 5
Client	HAZMAT SERVICES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: FLORENCE ARCHER	Contact	: Customer Services ES
Address	: Level 1 45C Fitzroy St	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Carrington 2294		
Telephone	: +61 2 4961 1887	Telephone	: +61-2-8784 8555
Project	: N4656	Date Samples Received	: 30-Jun-2022 15:53
Order number	:	Date Analysis Commenced	: 01-Jul-2022
C-O-C number	:	Issue Date	: 07-Jul-2022 14:48
Sampler	: FA/DH		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Accreditation No. 875
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG050G:LOR raised due to sample matrix.

Page : 3 of 5 Work Order : ES2223035 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC2A	 	
		Samplii	ng date / time	28-Jun-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2223035-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	 	
EG050T: Total Hexavalent Chromium						
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.10	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	<0.004	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
EK028SE: Weak Acid Dissociable CN by	v Segmented Flo	w Analyse	r			
Weak Acid Dissociable Cyanide		0.004	mg/L	<0.004	 	
EK055G: Ammonia as N by Discrete Ana	alvser		_			
Ammonia as N	7664-41-7	0.01	mg/L	6.07	 	
EP075(SIM)A: Phenolic Compounds						
Phenol	108-95-2	1.0	μg/L	<1.0	 	
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	 	
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	

Page : 4 of 5 Work Order : ES2223035 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC2A	 	
		Sampli	ng date / time	28-Jun-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2223035-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued				
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbor	1S	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP075(SIM)S: Phenolic Compound Su	ırrogates					
Phenol-d6	13127-88-3	1.0	%	27.4	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	66.4	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	60.1	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	61.1	 	
Anthracene-d10	1719-06-8	1.0	%	85.8	 	
4-Terphenyl-d14	1718-51-0	1.0	%	80.4	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)					
Compound	CAS Number	Low	High				
EP075(SIM)S: Phenolic Compound Surrogates							
Phenol-d6	13127-88-3	10	44				
2-Chlorophenol-D4	93951-73-6	14	94				
2.4.6-Tribromophenol	118-79-6	17	125				
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	20	104				
Anthracene-d10	1719-06-8	27	113				
4-Terphenyl-d14	1718-51-0	32	112				

CHAIN OF CUSTODY ALS Laboratory: please tick 🤿

Stydney 277 Wowlpanis Rit Smithahl NSW 2426 Stratame 32 Sharet St. Stalford OTD 4053 Eth. 02 8703-8555 Examples sylmepolation voice Eth. 07 3243 7222 Examples laichane2/lationuloi com 11 Novnastle: 5 Rongges Rd, Wardsonk NSW 2304 117 Townsville: 14-15 Econes (3, Bohle fall (3 4016 19162 4068 94331 Kamples new astronomic (1) 07 4706 06091 Investigation of Second Sciences and Second Sciences

31: Melbourne 24 Westall Rd. Spranceste VPC 3171 13) 03 6540 66001 samples metholibris data have com :: Adataide: 2-1 Ruma Ed. Poeral/4 SA 5095 The D3 6359 0899 FladeLadeScatsenetre cam

10 Perth 1011 of Way, Maksan WA 6090 Ch. 03 0200 7650 E. Aningles performancements 13 Launcesten: 27 Weilington St. Launcesten 1A5:7250 15 GL6331 2169 F Jaun/neton/dolognome.com

CLIENT:	Hazmat Services		TURNAROU	IND REQUIREMENTS :	Standard TAT (Lis	due date):					FOR	LABORAT	ORY USE	ONLY (Cirale)
OFFICE:	Level 1, 45C Fitzroy Street, Carrin	gton NSW 2294	(Standard TAT	may be longer for some lesis e Organics)	🗍 Non Standard or u	gent TAT (List	due date	3):			Cus	ody Seal Inter	a 1 7		Yes No (N/A
PROJECT:	N465	56	ALS QUOT	E NO.:	SYBQ/478			COC SEQUEN	CE NUMBER	(Circle)	Free	icë / frozën ic	e bricks pre	sent upon	receipt? Yes (No). N//
ORDER NUMBER:			COUNTRY C	F ORIGIN:			co	C: 1 2	34	56	7 Rand	Jom Sample T	emperature	on Receip	· 10.8 ···
PROJECT MANAGER	Florence Archer	CONTACT	PH: 02 491180	10249611887	961 1887			1 2	34	56	7 Olhe	r comment:			10.0
SAMPLER:	FA/DH	SAMPLE	MOBILE:		RELINQUISHED BY:		RE	CEIVED BY:			RELINQU	ISHED BY:		RECEIVED BY: DA	
COC Emailed to ALS1	Y (YES / NO)	EDD FOR	MAT (or default)):	Florence Archer		1	70 B			1708	3	50	~	Δ 17
Email Reports to : for	ence.archer@hazmatservices.com.au	1			DATE/TIME:		DA	TE/TIME;	. سر ر	` .	DATE/TH		SP	'n.	DATE/TIME: DISC
Email Involce to: adm	in@hazmatservices.com.au; florence.a	archer@hazmatservices.com	.au		30/6/22		3	0/6/22	3:5.	spm	- 30/6	2/22			30002 1 1
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL:													
ALS USE ONLY SAMPLE DETAILS CONTAINER I MATRIX: Solid(S) Water(W)					FORMATION	ANALYS	SIS REQ	UIRED including S	UITES (NB.	Sulte Codes	must be listed	d to allract sui	ito price) red).		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERV/ (refer to codes bei	ATIVE TOTAL (ow) BOTTLES	Ammonia	Phenols	Free Cyanida Tetal Total Cyanide Cyanida Cyanida	Hexavalent Chromiun	Mołybdanum	Lead	Total PAH	BTEX	C d a Hall	omments on likely contaminant lovels, lutions, or samplos requiring specific QC nalysis otc.
1	QC2A	28/06/2022	Water			x	x	x	x	x	×	x			
												, 1 500	aronm	ental	Division
												EIN	inev		
						At a second						+ 3%	Work Ot	der Re	ference
						A. A	Ч _{сър}			·			ESź	222	3035
							Sectory.	173 -					-		
							•		1					- U 1	
								The second secon		· · · · · ·				714	
						4 <u>8</u> 4	~						111	11	70)))
						NEW	~ Or	2h.						N, N	·경방이슬로(11)
						1 = MC	AS7	70/ <u>7</u>				T	elephone :	+ 61-2-9	784 8555
					TOMAL			1					t		
Water Conteiner Codas	P = University of Plastic: N = Nilic Press	erved Plastic: ORC = Nitric Prot	erved ORC; SH =	Sodium Hydroxido/Cd Preson	vod; S = Sodium Hydraxido f	reserved Plastic	c, AG = Ai	l mber Glass Unproserv	l red; AP - Airfa	aight Unpros	orved Plastic			i	1. D

V = VOA Vial HCI Preserved Flastic, H = Hale Flastic Voa Flastic, OFC = Marc Flastic Voa Flastic, SH = Solutin Hydroxido Flastic, SF = Solutin Hydroxido Flastic, H = HCI preserved Plastic, H = HCI preserved Plastic, H = HCI preserved Speciation bottle, SF = Sulfuric Preserved Plastic; F = Form Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Storile Bottle, AS = Plastic Bag for Acid Sulphato Solis; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	ES2224044	Page	: 1 of 6
Client	HAZMAT SERVICES PTY LTD	Laboratory	Environmental Division Sydney
Contact	: FLORENCE ARCHER	Contact	: Customer Services ES
Address	Elevel 1 45C Fitzroy St	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Carrington 2294		
Telephone	: +61 2 4961 1887	Telephone	: +61-2-8784 8555
Project	: N4656	Date Samples Received	: 07-Jul-2022 16:50
Order number	:	Date Analysis Commenced	: 11-Jul-2022
C-O-C number	:	Issue Date	: 14-Jul-2022 18:14
Sampler	: FA/DH		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Accorditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6 Work Order : ES2224044 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC3A	 	
		Samplii	ng date / time	06-Jul-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2224044-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	 	
EG050T: Total Hexavalent Chromium						
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	 	
EK025SF: Free CN by Segmented Flow	Analyser					
Free Cyanide		0.004	mg/L	<0.004	 	
EK026SF: Total CN by Segmented Flow	Analyser					
Total Cyanide	57-12-5	0.004	mg/L	<0.004	 	
EK028SF: Weak Acid Dissociable CN by	Seamented Flov	w Analyse	r			
Weak Acid Dissociable Cyanide		0.004	mg/L	<0.004	 	
EK055G: Ammonia as N by Discrete Ana	lvser					
Ammonia as N	7664-41-7	0.01	mg/L	5.41	 	
EP075(SIM)A: Phenolic Compounds						
Phenol	108-95-2	1.0	µg/L	<1.0	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	Irocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	

Page : 4 of 6 Work Order : ES2224044 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC3A	 	
		Samplii	ng date / time	06-Jul-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2224044-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued				
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbon	IS	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocart	bons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	120	 	
C29 - C36 Fraction		50	µg/L	110	 	
^ C10 - C36 Fraction (sum)		50	µg/L	230	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	าร			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	210	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	210	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	 	
(F2)						
EP080: BTEXN			ä			
Benzene	71-43-2	1	µg/L	<1	 	
	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L 	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	

Page : 5 of 6 Work Order : ES2224044 Client : HAZMAT SERVICES PTY LTD Project : N4656

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	QC3A				
		Sampling date / time		06-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2224044-001				
				Result				
EP080: BTEXN - Continued								
EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6	13127-88-3	1.0	%	25.4				
2-Chlorophenol-D4	93951-73-6	1.0	%	46.2				
2.4.6-Tribromophenol	118-79-6	1.0	%	52.8				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	53.7				
Anthracene-d10	1719-06-8	1.0	%	66.2				
4-Terphenyl-d14	1718-51-0	1.0	%	59.8				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	107				
Toluene-D8	2037-26-5	2	%	99.4				
4-Bromofluorobenzene	460-00-4	2	%	100.0				
ALS

Surrogate Control Limits

-		
	Recovery	Limits (%)
CAS Number	Low	High
13127-88-3	10	44
93951-73-6	14	94
118-79-6	17	125
321-60-8	20	104
1719-06-8	27	113
1718-51-0	32	112
17060-07-0	71	137
2037-26-5	79	131
460-00-4	70	128
	CAS Number 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8 1718-51-0 17060-07-0 2037-26-5 460-00-4	Recovery CAS Number Low 13127-88-3 10 93951-73-6 14 118-79-6 17 321-60-8 20 1719-06-8 27 1718-51-0 32 1

CHAIN OF CUSTODY

ALS Laboratory: please tick ->

(1) Non-Alles, "The ensure of the planets a first (2001) [1]. Townsville, fairly being etc. (Construct all 100 construction (Construct Construction) and anti-angle for an interval of estimation of the second s

 Adelaidar est lisses on the pick set 60%. provide at the defects a second begin to encode

11 Methourne is User Antice Systematics (2013) - 11 Perth. 1910 (2014) Manapa Walford (2014) (2015) (2014) Instead of standard systematics of the Configuration of Configuration of Configuration (2014). 13 Lounceston, 23 Weiselige and China ended and 5250 a particular participation decision decision de la seconda d

CLIENT:	Hazmat Services		TURNAROUND REQUIREMENTS :	Standard TAT (List due date):								FOR LABORATOR	RY USE ONLY (Circ	le)	
OFFICE:	Level 1, 45C Fitzroy Street, Carrington NSW 2294		(Slandard TAT may be longer for some tosts e.g. Ultra Trace Organics)	Non Standard or urgent TAT (List due	date):							Custody Seal Intact?		Yea	No NIA
PROJECT:	N4656		ALS QUOTE NO .:	SYBQ/478		coc	SEQUEN	CE NU	MBER	(Circle)		Free ice / frozen ice b	pricks present upon rece	pl? Yes (
ORDER NUMBER:			COUNTRY OF ORIGIN:		60 C :	1	2	3	4	5 f	5 7	Random Sample Ten	iperature on Receipt	167	'C
PROJECT MANAGER:	Florence Archer	CONTACT P	H: 02 4911887		OF:	1	2	3	4	5 (5 7	Other comment		<u>10.C</u>	
SAMPLER:	FA/DH	SAMPLER N	IOBILE:	RELINQUISHED BY:	RECE	IVED B'	Y:	-1-	- 6		REL	NOUISHED BY:	1/20	RECEIVED BY:	'P1'
COC Emailed to ALS?	(YES / NO)	EDD FORMA	T (or default):	Florence Archer		N		11 1	1/27	2	<u>ب</u> ا	10 1	162		,
Email Reports to : fore	nce.archer@hazmalservices.com.au			DATE/TIME:	DATE	TIME:		1L	T - 3		DAT	e/time:	1774	DATE/TIME	. ລາຍ.
Email Involce to: admin	@hazmatservices.com.au; florence.archer@hazmatse	07/07/22				10	20				1,00	17/27	1 11 70		

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE ONLY	SAMPL MATRIX: So	E DETAILS blid(S) Water(W)		CONTAINER INFORMATION ANALYSIS REQUIRED including SUITES (NB. Suito Codes must be listed to attract suite price) Where Motals are required, specify Total (unifiered bottle required) or Dissolved (feid filtered bottle required)									Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	Phenois	Free Cyanidef Total Cyanide/ dissolved Cyanide	Hexavatent Chromiun	Molybdenum	Lead	Total PAH	BTEX	ТРН	Comments on likely contaminant lovels, dilutions, or samples requiring specific QC analysis etc.
[QC3A	6/07/2022	Water			x	x	×	x	x	x	x	x	×	
,,,,,,, _														1	
												Envir	onmer	ntal	Division
								er e	×	dana -		Sydn Wo	ey rk_Orde	r Re	ference
••••••••••••••••••••••••••••••••••••••								7222		13.57		E	S22	22	4044
								LA	B_OF_	<u> PRIGI</u>	N:		111 - 111 - 1 11 - 11 11	R 119.	
								N	EWCA	STLE				U I	
		-												Ň	
												-))) ()) ¹ 64		
												Teleph	one : + 61	-2-878	9 CCC 9 H
				TON	1.										
Water Container Codes: F	P = Unpreserved Plastic, N = Nitric Preser	ved Plastic, ORC = Nitric Preserv	od ORC; SH	= Sodium Hydroxide/Cd Preserved; S = Sodius	m Hydroxide Pre	served Plast	ic; AG = Ami	ber Glass Unpreserve	red; AP - Airfro	oight Unpreser	ved Plastic SP # Sulfurio	Protocyad Pla	astic: E = Fi	omaide	abyda Prosorvod Glass:

V = VOA Vial HC! Preserved, VB = VOA Vial Sodium Bisubhate Preserved, VS = VOA Vial Sulfuric Preserved, AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HC! preserved Plastic; HS = HC! preserved Speciation bottle; SP = Sulfuric Preserved Plast Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag

Ground and Surface Water Monitoring, Kooragang Island Waste Emplacement Facility Annual Monitoring 2022

Project N	lo. N4656					Well ID:		KS7/1	
Client:	HCCDC	:				Date:		20-6-2	2
Site:	KIWEF 8	EPAP				F . 1.1 F .		100 015	
Weather	: Ei,	e, Sm	~			Field led	im:	PH, DP	
Water Le	vel Data (me	easured a	is metres	from Top o	of Casing	[ToC])	3.45	1 States	
a. Dept	h to Water To	able (ToC)	:			NAPL pre	sent?	3	Ves_ No
b. Wells	Stickup (ToC t	o ground l	evel)	/			_		
c. Total	Well Length:		/		/	NAPL Inte	erpha	ise Depth:	
d. Dept	h of Water C	ołumn (c-	-a):				2.3		d ²
e. Casir	ng Diameter:	/					We	ell Volume: $V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Informatio	n		1 11					
Purge M	ethod:	Suf	ore 1	water	2			Purge Depth:	-
Field Equ	Jipment:	YSIL	ate C	Queility	nete	-		Start Time:	10:25
Time	Volume Removed	Temp (°C)	pН	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Con	nments (colour, o	dour, turbidity, etc.
	(L)						/		
							/	~	
			/			wai	P		
		/		50	wfe ex		-		
	/								
		/							
/	~								
Purging sho stabilised r % and tem	ould continue fo neasurements an perature is within	r a minimum re achieved n 0.5 °C ove	n of three b . Stabilised r two succe	ore volumes o measuremer assive measure	and stabilise nts for pH ar ements.	ed measuren re within 0,1 p	nents a oH unit:	re achieved or until the s; EC, redox and dissolv	e bore purges dry and ved oxygen are within 10
Well San	Nolume	ation	1		EC				
Time	Removed (L)	Temp (°C)	рН	Redox (mV)	(µS/cm)	Diss.O2 (ppm)	Cor	mments (colour, o	dour, turbidity, etc.
1030	_	14.0	6.96	222.9	1894	7.82	C	eor, no order	5
F 1 **-				D. III	- VAL-1				
End lime	e:	ozzona o hina		Depth to	o water I	able:			
sample	Primary Sam	ple ID		Intro	a-lab San	ople ID		Inter-lat	Sample ID
		and the second second			a strategy with the				

Project N	lo. N4656					Well ID:		ics 2/1	
Client:	HCCDC	:				Date:		20-6-22	
Site:	KIWEF 8	EPAP						PA DIA	
Weather	Fine	Sun.	7			Field led	im:		
Water Le	vel Data (m	easured a	s metres	from Top o	of Casing	[ToC])			
a. Dept	h to Water To	able (ToC)	:			NAPL pre	sent?	2	□Yes □No
b. Wells	Stickup (ToC	to ground l	evel)						
c. Total	Well Length:			/		NAPLINT	erpha	ise Depth:	
d. Dept	n of Water C	olumn te-	·a):	0	in w	ater	147		<i>d</i> ²
e. Casir	g Diameter:		/	Surf			VV e	ell volume: $v = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Informatio	on		1997					
Purge M	ethod:						_	Purge Depth:	_
Field Equ	ipment:	451 4	sater 1	Quality	nese	-		Start Time:	10:50
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Cor	mments (colour, oo	dour, turbidity, etc.
							/		
					/		/		
				/	/	nt	e		
1.1.21.			/	1	Red	4 Wa			
2.2		/		5	int				
	/								
/									
Purging sho stabilised n % and tem	ould continue fo neasurements a perature is withi	l r a minimum re achieved n 0.5 °C over	of three bo Stabilised two succe	l pre volumes o measuremer ssive measur	l and stabilise ats for pH an ements.	d measuren e within 0.1 p	l nents a oH unit	re achieved or until the s; EC, redox and dissolv	e bore purges dry and red oxygen are within 10
Well San	pling Inform	nation				_			
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (colour, o	dour, turbidity, etc.
1055	V	14.6	8.57	£136.5	994	8.63	CLO	cor, no odo	w
	0		-						1
			-						
End Time):			Depth to	water T	able:			
Sample	Collection Su	ummary				0			
	Primary Sam	ple ID		Intro	a-lab San	nple ID		Inter-lab	Sample ID
K	52/1				_	-			

Project N	o. N4656					Well ID:		KS 1	13	
Client:	HCCDC					Date:		20/6	122	
Site:	KIWEF 8	EPAP				Field Tec	im:	1-0	-	
Weather:	Pint	e Sur	Y			riela lea		(Per (Ult	
Water Lev	vel Data (m	easured as	metres f	from Top	of Casing	[ToC])				
a. Depth	to Water T	able (ToC):	. 1.3.			NAPL pre	sent?			IYes 🗆 No
b. Well S	tickup (ToC	to ground le	vel)	/		/				
c. Total V	Vell Length:				/	NAPL Inte	erphas	e Depth:		
d. Depth	of Water C	olumn (e-c	a):	/	Sofar	e	Wo	Il Volumet 1	$V = \pi^{d^2}$	2 × c =
e. Casing	g Diameter	/			~ ~		We	ir volorne.	$v = n \frac{4}{4}$	~
Well Purg	e Informatio	on								
Purge Me	thod:	2	_					Purge Dept	th:	ſ
Field Equi	pment:	451 0	acte	Qual	in ne	de	e e tor	Start Time:		10:20
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm)	Diss.O2 (DDPT)	Com	nments (colo	our, odd	our, turbidity, etc.
							/			
				/	/					
			/	/	-					
			/		pat					
			Sur	fack						
	//								7 80 112 14	
Purging sho stabilised m % and temp	uld continue fo easurements a perature is withi	r a minimum a re achieved. n 0.5 °C over t	of three bo Stabilised r two succes	re volumes o neasuremei sive measur	and stabilise nts for pH are ements.	d measuren e within 0.1 p	nents ar oH units;	e achieved or u ; EC, redox and	dissolve	oore purges dry and d oxygen are within 10
Well Sam	pling Inform	nation		1	50		1			
Time	Removed (L)	Temp (°C)	рН	Redox (mV)	(µS/cm	Diss.O2 (ppm)	Corr	nments (colo	our, od	our, turbidity, etc.
1125	1	13.8	7.20	-6.3	621	2.77	Mw	ty black	c_{i} or	genic colour
End Time	:			Depth to	o Water Te	able:				
Sample (Collection S	ummary								
	Primary Sam	iple ID		Intra-lab Sample ID				Inte	er-lab :	Sample ID
)	cs1/3	5			-	_				

Project N	lo. N4656					Well ID:		KS IO/1	
Client:	HCCDC	:				Date:		20-6-22	
Site:	KIWEF 8	EPAP						EA DI+	
Weather	Fire	, sun	~y			riela lea	in.		
Water Le	vel Data (m	easured a	s metres	from Top	of Casing	[ToC])			
a. Depti	n to Water To	able (ToC):				NAPL pre	sent?		□Yes □No
b. Wells	stickup (ToC t	to ground le	evel)	/	/				
c. Total	Well Length:				, see	NAPL Inte	erphas	e Depth:	1. EV. 1
d. Depti	n of Water C	olumn (c-	a):	Surfac	e				<i>d</i> ²
e. Casin	g Diameter;	/ /					We	Il Volume: $V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Informatio	on							
Purge M	ethod:							Purge Depth:	-
Field Equ	ipment:	YSI U	Date (Quality	, rete	-		Start Time:	1140
Time	Volume Removed	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Com	nments (colour, o	dour, turbidity, etc.
	(L)	(0)		1)	(Ppm)		/	
				/		der			
			/		le u	ar			
			/ /	500	r			47 47 47 7 1	
						1			
	/	/							
	1								
Purging sho stabilised m % and tem	ould continue fo neasurements a perature is withi	r a minimum re achieved. n 0.5 °C over	of three bo Stabilised two succe	measureme ssive measure	and stabilise nts for pH are ements.	d measurem e within 0,1 p	nents an oH units;	e achieved or until the ; EC, redox and dissolv	e bore purges dry and ved oxygen are within 10
Well Sam	Nolume	ation		1	EC				
Time	Removed (L)	Temp (°C)	рН	Redox (mV)	(µS/cm)	Diss.O2 (ppm)	Corr	nments (colour, o	dour, turbidity, etc.
1145	-	14.6	7.23	-46.4	801	1.60	CL	ear, no adou	~
		-						a'	
End Time):			Depth to	o Water To	able:			
Sample	Collection Su	ummary							
	Primary Sam	ple ID		Intro	a-lab Sam	nple ID		Inter-lak	o Sample ID
k	LS 101	1							

Project N	lo.	N4656						Well ID:		BHed	95	
Client:		HCCDC						Date:		21/06/2	.).	
Site:		KIWEF &	EPAP					Field Tea	Im.			
Weather	:	Five,	Sunni	1						FA		······
Water Le	vel [Data (me	asured a	s met	res f	from Top c	of Casing	[ToC])				
a. Depti	h to '	Water To	ible (ToC):	:		2.5m		NAPL pre	sent?	·····		IYes 🗹 No
b. Well S	Sticku	up (ToC t	o ground le	evel)								
c. Total	Well	Length:		1	3	·4m		NAPL Inte	erpha	se Depth:		
d. Depti	h of \	Water C	olumn (c-	a):					147.		., 0	l ²
e. Casin	ng Die	ameter:				40mn			VV 6	eli volume:	$V = \pi -$	$\frac{-}{4} \times c =$
Well Purg	ge In	formatio	n									
Purge M	etho	d:		Ra	lev	, ,				Purge Der	oth:	2.54
Field Equ	vipme	ent:	lh	fer Le	see	Pwbr	WOM			Start Time	:	12:30m.
Time	Vo Rei	olume moved (L)	Temp (°C)	pł	+	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oa	lour, turbidity, etc.
12:34	Z	56	20.5	79	7	-2483	954	3.47	Ĉi	loudy, gr	eyijh-	organe oden
12:36	5	L	142	7.9	6	-253.5	936	1.65		<u> </u>		
12:39)()L	18:3	7.9	1	-2552	979	1.57		(₍	1,	
12:43	15	51	18.2	g.1	71	-258.2	938	1.69		17	1	
Purging sho stabilised m	buld c neasu	ontinue for rements ar	a minimum e achieved.	of thre Stabil	e boi ised r	re volumes a measuremen	ind stabilise Its for pH ar	d measuren e within 0.1 p	nents a oH unit	re achieved o s; EC, redox an	r until the d dissolve	bore purges dry and ed oxygen are within 10
Well San	nplin	g Inform	ation	100 30			sinonis.				<u>.</u>	
Time	Va Rei	olume moved (L)	Temp (°C)	p	Ч	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oc	lour, turbidity, etc.
12:43	1.	SL	18.3	70	11	-258.2	938	1.69	Ci	loudy, or	agenz	ochen,
									-	······································		
End Time	e:			6		Depth to	Water T	able:				
Sample	Colle	ection Su	mmary									· · · · · · · · · · · · · · · · · · ·
	Prim	ary Samj	ole ID			Intro	a-lab San	nple ID			nter-lab	Sample ID

Project N	1 0.	N4656						Well ID:		K91	35				
Client:		HCCDC						Date:		21/06	22				
Site:		KIWEF &	EPAP					Field Tec	ım.						
Weather	:	hine,	Sunnu					neid rec		FA	<u> </u>				
Water Le	vel D	ata (me	asured a	s met	res f	from Top o	of Casing	[ToC])							
a. Deptl	h to V	Water Tc	ble (ToC)		/	'74m		NAPL pre	senta	2	[∃Yes ⊒Ko			
b. Wells	Sticku	up (ToC to	o ground le	evel)	Ín	ground	well.								
c. Total	Well	Length:			ć	3.74m		NAPL Inte	erpha	ise Depth:					
d. Depti	h of V	Nater Co	olumn (c-	a):		RL			We	ell Volume:	$V = \pi^4$	$\frac{d^2}{d^2} \times c =$			
e. Casin	ng Dio	ameter:				somm					v – n	4			
Well Purg	ge Inf	ormatio	n												
Purge M	etho	d:		Mia	ωρι	arge - Lo	w flou)		Purge Dep	oth:	1.74.			
Field Equ	Jipme	ent:	In	terfac	e	probe.	YSI U	IPM		Start Time	:	11:52an.			
Time	Vc Rer	olume noved (L)	Temp (°C)	рН		Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (col	our, oc	lour, turbidity, etc.			
12.00	2.	56	18.4	7.8	1	-152.7	171,1	9.33	Gi	Greyish dardy. organi odar					
12:05	5	L	18.0	77	ŀ	-146.8	131-1	8.33		T ₁	4	'1			
12:07	6	L	150	7.7	5	-144.1	137.2	8.19		4	11	<i>'</i> ,			
Purging sho stabilised m % and tem	i Duid co neasur peratu	ontinue for ements are ure is within	a minimum e achieved. 1 0.5 °C over	of thre Stabili two su	e bo sed r cces	re volumes c measuremer sive measure	L and stabilise hts for pH ar ements.	d measuren e within 0.1 p	nents a oH unit:	ire achieved or s; EC, redox an	until the d dissolve	bore purges dry and ed oxygen are within 10			
Well Sam	npling	g Inform	ation												
Time	Vc Rer	noved (L)	Temp (°C)	pł	Η	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (co	lour, oc	dour, turbidity, etc.			
12:08	E	3L	18.0	7.7	5	-144.1	137.2	8.19	C	loudy . vy	gami	oduu.			
												,,,			
End Time) e:	12.1	10			Depth to	Water Te	able:	1.	21Cm,					
Sample	Colle	ection Su	mmary			<u></u>			<u></u>						
	Primo	ary Samp	ole ID			Intro	a-lab San	nple ID		In	ter-lab	Sample ID			

Project N	lo.	D. N4656						Well ID:	ID: K9/3N					
Client:		нссрс						Date:		21/06/	22			
Site:		KIWEF &	EPAP					Field Tec	ım.	, -				
Weather	:	Fine,	sunny					Tield red		FA				
Water Le	vel D	ata (me	asured a	s met	res f	from Top c	of Casing	[ToC])						
a. Deptł	n to V	Vater Ta	ble (ToC):			10-2-75	m.	NAPL pre	senta	2		□Yes ■No		
b. Well S	Sticku	p (ToC to	o ground le	evel)	- 12	naround	mell							
c. Total	Well	Length:			ł i	0-20m		NAPL Inte	erphc	se Depth:				
d. Depti	n of V	Vater Co	olumn (c-	a):		7.45m			14/		17	d^2		
e. Casin	ıg Dio	ameter:				SDMm				ell volume.	$v = \pi$	$L = \frac{1}{4} \times C =$		
Well Purg	ge Inf	ormatio	n			.								
Purge Me	etho	d:				Purge De	pth:	2.75m						
Field Equ	ipme	ent:	Inter	Gle	pro	be ys	1 WQN	1		Start Time	:	11:05 cm.		
Time	Vc Rer	olume noved (L)	Temp (°C)	pl	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, o	odour, turbidity, etc.		
11:22ch	3	L	20.6	63	5	-162.5	194.4	5.95	cle	clear. organic odan.				
1125	5	L	20.6	6.3	1	-119.2	89.1	5-25	1	`	·/	/		
11:30	7.	56	20.6	6.2	8	-157.4	72.1	5.24	1	/		1		
11:35	10	いん	20.6	6.2	7	-1572	75.2	5.35		ı	-//			
Purging sho stabilised m	buld co neasur	ontinue for ements are	a minimum e achieved.	of thre Stabil	e bo ised r	re volumes a measuremen	nd stabilise Its for pH ar	d measuren e within 0.1 g	hents c DH unit	re achieved o s; EC, redox ar	r until th nd dissol	e bore purges dry and ved oxygen are within 10		
% and tem	peratu	re is within	0.5 °C over	two su	lcces	sive measure	ements.							
Wen Sun		olume				During	EC	0.0						
Time	Rer	noved (L)	(°C)	p	Ч	(mV)	(µ\$/cm)	(ppm)	Cor	mments (cc	olour, c	odour, turbidity, etc.		
11:35	1	OL	20.6	6.2	7	-157.2	75.2	5.35	Cle	ar, orga	мc	odouv.		
				. *										
								-						
								+						
End Time)):		I			Depth to	Water T	able:			, MR			
Sample	Colle	ction Su	mmary						1					
	Primo	ary Samp	ole ID			Intro	a-lab San	nple ID		lr	nter-la	b Sample ID		

Project N	lo.	N4656						Well ID:		KIILZW		
Client:		HCCDC						Date:		21/06/2.	L	
Site:		KIWEF &	EPAP					Field Tea	m.			
Weather	:	Fine,	Sunny	-						FA		
Water Le	vel [Data (me	asured a	s met	res f	rom Top o	of Casing	[ToC])				
a. Depti	h to	Water To	ible (ToC):		1	.7M		NAPL pre	senta	?		□Yes INO
b. Wells	Stick	up (ToC to	o ground le	evel)	0	41M						
c. Total	Well	Length:			11	46m	1	NAPL Inte	erphc	ise Depth:		
d. Deptl	h of	Water Co	olumn (c-	a):	2	·			\		V – –	$d^2 \times c$
e. Casir	ng Di	ameter:				50mn			~ ~ ~	ell volume.	v = n	
Well Purg	ge In	formatio	n									
Purge M	etho	d:	Mi	cwp	WGL	3 45	I WQM			Purge De	pth:	1.7
Field Equ	Jipm	ent:	Int	erfa.	r æ	pube. n	10M			Start Time	:	9:57
Time	Vo Re	olume moved (L)	Temp (°C)	J pl	4	Redox (mV)	ÉC (µS/cm)	Diss.O ₂ (ppm)	Cor	nments (co	lour, o	dour, turbidity, etc.
09:57	2.	Š	18	7.	45	-228.3	521	8.65	cle	ear, wqa	me c	dau.
10:02	51	-	186	7.4	15	-2.32.5	375	8.81		//	'1	
10:08	7.	5L	186	7.4	нį	-239.6	369.2	7.37		i/	'/	
10:14	10	L	18·6	7.1	ľ4	-247.2	375.2	6.89		11	4	
10:25	15	2	18.6	7.4	9	-251.9	368.2	6.77	6	clear - on	give	odam.
10:32	201	L	18.7	7.4	+1	-255.7	374.4	6.67		<i>II</i>	11	1,
Purging sho stabilised n % and tem Well San	ould c neasu perat	ontinue for rements ar ure is within g Inform	a minimum e achieved. 1 0.5 °C over ation	of thre Stabil two su	e boi ised r icces	re volumes c measuremer sive measure	and stabilise hts for pH are ements.	d measurem e within 0.1 p	nents c oH unit	sre achieved o s; EC, redox ar	r until th ad dissol	e bore purges dry and ved oxygen are within 10
Time	Re	olume moved (L)	Temp (°C)	pi	H	Redox (mV)	EC (µ\$/cm)	Diss.O2 (DDM)	Cor	mments (cc	olour, c	odour, turbidity, etc.
10:32	0	ZOL	18.7	7	39	-255-6	368.5	6:29	- (clear, or	gon	odan-
End Time	∟ ∋:	ושי	Ur			Depth to	Water Te	able:	1.	(1	-	
Sample	Colle	ection Su	mmary							/ 1		
	Prim	ary Sam	ole ID			Intro	a-lab Sam	nple ID		lr	nter-lai	b Sample ID

Project N	lo.	N4656						Well ID:		KILLZE		
Client:		нссрс						Date:		21/06/23		
Site:		KIWEF &	EPAP					Field Tea				
Weather	:	Fine,	Synny					riela lea		FA		
Water Le	vel	Data (me	easured a	s met	res	from Top o	of Casing	[ToC])				
a. Deptl	h to	Water To	ble (ToC)	:		, 42		NAPL pre	sent	2		□Yes ZNo
b. Wells	Stick	up (ToC t	o ground l	evel)		0.72						
c. Total	Well	Length:			2	5.49		NAPL inte	erphc	ase Depth:		-
d. Depti	h of	Water C	olumn (c-	-a):		· · ب د				I		d ²
e. Casir	ng Di	ameter:				(mn			W	ell Volume:	$V = \pi$	$t \frac{\alpha}{4} \times c = 0$
Well Purg	ge In	formatio	n			201110		- · · · · ·				
Purge M	ethc	d:	Mico	11100	0	MOM	(487)			Purge Dep	oth:	
Field Equ	Jipm	ent:	1º IICre	pury	<u>,</u>	10410		Svf. 6	5	Start Time:		29:050
Time	ne Volume Removed (°C) (L)					Redox (mV)	EC (µS/cm)	Diss.O ₂ (ppm)	Cor	nments (col	our, o	dour, turbidity, etc.
09:10	2	51	17.7	2.1:	7	- 87.4	830	6.19	lia	lf Bwin	INA	anc.
ra: 17		rt.	12.9	2.0	7	97.4	NL IL	7.73	La.	It Dun	, erg Ma	ig 41.
09.72		۲.i	149 1.07 -10				1162	7.39	,	i 1	- 9	11
01.25		76	10	11	<u> </u>		275	101		·		
Purging sho) buld c	continue for	a minimum	of thre	e bo	pre volumes d	and stabilise	d measurem	nents c	are achieved or	until th	e bore purges dry and
stabilised n % and tem	neasu perat	urements ar ture is withir	e achieved 1 0.5 °C over	. Stabil r two su	ised Jace	measuremer ssive measure	nts for pH ar ements.	e within 0.1 p	oH unit	s; EC, redox an	d dissol	ved oxygen are within 10
Well San	nplin	g Inform	ation	,					T			
Time	V Re	olume moved (L)	Temp (°C)	p	Н	Redox (m∨)	ЕС (µ\$/ст)	Diss.O2 (ppm)	Coi	mments (co	our, c	odour, turbidity, etc.
09.26 28 .	{	82	18.1	7.1	d	-99.2	24.3	701	Ľų	glt Breven	n, <i>Q</i>	Game.
										J		
										P		
							1					
End Time) E:	n 2	`2T	1		Depth to	water T	able:	n	6Cm		
Sample	Colle	ection Su	<u>ر د</u> Immary						1 V.	<u>v31-v</u>		
	Prim	ary Sam	ple ID			Intro	a-lab San	nple ID		In	ter-la	b Sample ID

.

-

, t ···.

Project N	NO. NA	4656						Well ID:		EG	0	
Client:	но	CCDC						Date:		22-6	- 22	
Site:	KI	WEF &	EPAP					Field Tec	ım.	EQ	01+	
Weather	: (:.~e	<u> </u>					neid iec	a rri.		- (4	
Water Le	evel Dat	a (me	asured a	s met	res	irom Top o	of Casing	[ToC])				
a. Dept	h to Wo	ater To	ble (ToC)	:	5	5,70~	^	NAPL pre	sent?	2	[[□Yes ₽No
b. Wells	Stickup	(ToC to	o ground le	evel)	Û	. 69~						
c. Total	Well Le	ngth:			2	29.26,	^	NAPL Inte	ərpha	se Depth:		
d. Dept	h of Wc	ater Co	olumn (c-	·a):	2	3.56	~					d ²
e. Casir	ng Diam	neter:				50~~			We	ell Volume:	$V = \pi \cdot$	$\frac{1}{4} \times c =$
Well Purg	ge Infor	matio	n									
Purge M	ethod:		Bair.	er						Purge De	pth:	1-55 S.76
Field Equ	Jipment	t:	19, 4	51 1	بەد	er Ono	ating 1	here		Start Time	:	1:550-
Time	Volu Remc (I	me ved	Temp (°C)	pł	4	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Cor	nments (co	lour, oc	lour, turbidity, etc.
1400	\ \ \	/	23.0	7.	-3	-36.4	44027	5.87	Cle			and out of
1404	5		20.8	6.0	<i>j</i> 4	-191.3	44876	2.24		د ر	<	
1413	10		20.6	6.4	2	-122.4	44047	6.77		(L	. 🗸
Purging sha stabilised n % and tem Well San	puld conti neasurem perature npling li	inue for ients are is within nforme	a minimum e achieved. 0.5 °C over ation	of thre Stabili two su	e bo sed r cces	re volumes c neasuremer sive measure	and stabilise hts for pH are ements.	d measuren e within 0.1 p	nents a oH units	re achieved o s; EC, redox ar	r until the Id dissolve	bore purges dry and ed oxygen are within 10
Time	Volu Remc (L	me oved)	Temp (°C)	pł	-1	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oc	dour, turbidity, etc.
1413	10		20.6	69	2	122.4	44047	1.77	Cle	~	cre	oclum
										(), 2	,	
End Time				L		Depth to	Water To	hle:		· · · · · · · · · · · · · · · · · · ·		
Sample	Collecti	ion Su	mmarv		· · · • •							
	Primary	Samp	ole ID			Intro	a-lab Sam	nple ID		Ir	ter-lab	Sample ID
	ΞG1 -	\supset					-					

Project No.	N4656			Well ID:	EGIS	
Client:	HCCDC			Date:	22-6-27	L
Site:	KIWEF &	EPAP			EA.DI	+
Weather:	Fin	e, Surn	м	riela leam:		
Water Leve	l Data (me	asured as me	tres from Top of Casi	ng [ToC])		
a. Depth t	o Water To	ble (ToC):	-	NAPL present	rș	Yes □No
b. Well Stic	ckup (ToC to	o ground level)	0.65m			
c. Total We	ell Length:		4.63~	NAPL Interph	ase Depth:	
d. Depth c	of Water Co	olumn (c-a):	-			<i>d</i> ²
e. Casing	Diameter:	_	50~~		Ver Volume. $V = \pi$	$\frac{1}{4} \times c =$
Well Purge	Informatio	n		•		
Purge Meth	nod:				Purge Depth:	
Field Equip	ment:				Start Time:	
Time R	Volume Cemoved	Temp (°C) p	H Redox EC (µS/c (µS/c	m Diss.O2 (ppm) Cc	omments (colour, oc	dour, turbidity, etc.
	(=/					
			Dr.	3		
	/		, sel			
						· · · · · ·
Purging should stabilised mea % and temper	continue for surements are ature is within	a minimum of thre e achieved. Stabi 0.5 °C over two si	ee bore volumes and stab lised measurements for ph uccessive measurements.	ilised measurements t are within 0.1 pH un	are achieved or until the its; EC, redox and dissolv	bore purges dry and ed oxygen are within 10
Well Sampl	ing Inform	ation				
Time R	Volume lemoved (L)	Temp (°C) p	H Redox EC (mV) (µS/c	m Diss.O2 (DDm) CC	omments (colour, o	dour, turbidity, etc.
			vel	sy		
End Time:			Depth to Wate	r Table:		
Sample Co	llection Su	mmary				
	mary Samp		Intra-lab S	ampie ID	Inter-lab	sample ID

Project N	No.	N4656						Well ID:		KS	600			
Client:		нссрс						Date:		22	- 6-2	2		
Site:		KIWEF &	EPAP											
Weather	:	Fin	e, Su	<u>~~</u>	1				am:					
Water Le	evel D	ata (me	asured a	s mel	rest	irom Top (of Casing	[ToC])						
a. Dept	h to V	Vater To	ble (ToC)	:	-	3.011	\sim	NAPL pre	esent?]	Yes And		
b. Wells	Sticku	ip (ToC t	o ground le	evel)		0.45~								
c. Total	Well	Length:				5.51	~	NAPL Inte	erpha	se Deptk	n:			
d. Dept	h of V	Vater C	olumn (c-	a):		2.50	~		14/-			d ²		
e. Casir	ng Dic	ameter:			1/1	50~~	•			W OIUm	ie: $v = \pi$	$\frac{1}{4} \times c =$		
Well Purg	ge Inf	ormatio	n		•									
Purge M	ethod	d:	Mich	spu	, ce					Purge [Depth:	5.51~		
Field Equ	Jipme	ent:	18, 4	SI	<u>ں</u> د	iter Q	uality	net	e	Start Tir	me:	12:45pm		
Time	Vo Ren	lume noved (L)	Temp (°C)	pl	Η	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (ments (colour, odour, turb			
1316		١	22.6	6.3	30	-196.L	63.9	9,98	CL	10-, o-	San	odou		
1321	2.	5	20.2	6.1	υ	-168,1	110.2	4.66						
1327	5		20.2	6.	21	-162.1	72.5	4.45		e, e, y				
1333	7.	5	20.2	6.2	.6	-160.3	77.5	4.72	, c	L.	• س۲	_		
1337	te	5	20.2	6.0	29	-158.9	75.8	4.71						
												-		
Purging sho stabilised n % and tem	ould ca neasure peratu	entinue for ements ar re is within	a minimum e achieved. 1 0.5 °C over	of thre Stabil two su	e boi ised r icces	re volumes c measuremer sive measure	and stabilise hts for pH are ements.	d measurem e within 0.1 p	hents ar oH units,	e achieve ; EC, redox	d or until the and dissolve	bore purges dry and ed oxygen are within 10		
Well San	npling	Inform	ation			·		[T					
Time	Ren	lume noved (L)	Temp (°C)	pl	-1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (colour, oc	lour, turbidity, etc.		
1337	(,		Ls. 2	6,2	9 ₁	458.9	75.8	4.71	a	مر مرد	<u>a. 10</u>	clow		
End Time	e:			***		Depth to	Water To	able:						
Sample	Colle	ction Su	mmary											
(-	Primc	ary Samp	ole ID			Intro	a-lab Sam	ple ID			Inter-lab	Sample ID		
	21	GNN)				-			-				

Project N	NO. N4	656						Well ID:		KSI	GN		
Client:	нс	CDC						Date:		22.	-6.2	22	
Site:	KI	WEF &	EPAP							EO	~ ² •		
Weather	: 4	Fi~	و ، 2س	\sim				riela lec	am:	Li -)	, 04		
Water Le	evel Date	a (me	asured a	is me	tres	from Top	of Casing	[ToC])					
a. Dept	h to Wa	iter Tc	ble (ToC)	:	2	- 23,	~	NAPL pre	esent?	2	[Yes GNO	
b. Well:	Stickup ((ToC to	o ground	evel)	(D.62~	~						
c. Total	Well Ler	ngth:				3.56/	\sim	NAPL Inte	erpha	se Depth:			
d. Dept	h of Wa	ter Co	olumn (c-	-a):	· · ·	1.33,	~					<i>d</i> ²	
e. Casir	ng Diam	eter:			5	50~~	<u>^</u>		We	Volume:	$V = \pi^{2}$	$\frac{1}{4} \times c =$	
Well Purg	ge Inforr	natio	n										
Purge M	ethod:		Mic	سوە	Y.					Purge De	pth:	3.56	
Field Equ	uipment	:	19, 45	Σu	$\sim a^{+}$	er ei	earlity	note		Start Time	:	119.55	
Time	Volur Remov (L)	ne ved	Temp (°C)	p	Н	Redox (mV)	EC (µ\$/cm)	Diss.O ₂ (ppm)	Con	nments (co	lour, oc	dour, turbidity, etc.	
1200)		18.9	5.7	12	-)60.6	33.7	\$ 25	a.	est, or	0.2	odow	
1205	2.5	-	18.7	3.	47	-243.6	27.9	6.12		· · · · ·			
1212	5		18.6	S- 1	38	-174.8	26.4	4.60		۲.	۲	•ر	
1220	<i>7</i> . s		18.5	5.6	+1	-176.2	28.9	4.2C					
1225	10		18.5	S. 4	13	-178.9	29.2	4.19		÷ (• •	- -	
Purging sho stabilised m % and tem	ould contin neasureme perature is	nue for ents are s within	a minimum achieved. 0.5 °C over	of thre Stabil two su	ee boi lised r JCCes	e volumes c neasuremer sive measure	and stabilise hts for pH are ements.	d measurem e within 0.1 p	nents ar oH units	re achieved o ; EC, redox an	r until the d dissolve	bore purges dry and ed oxygen are within 10	
Well Sam	npling In	form	ation				·						
Time	Volun Remov (L)	ne ved	Temp (°C)	pi	Η	Redox (m∨)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, oc	lour, turbidity, etc.	
1225	10		18.5	ح. نر	3	-178.4	29.2	4,19	CLO	er urs	cn.z	odow	
)		
								,					
End Time	:					Depth to	Water To	able:					
Sample (Collectic	on Sur	nmary						L				
	Primary :	Samp	ole ID			Intro	a-lab Sam	Sample ID Inter-lab Sample ID				Sample ID	
KS	>16N	>											

Project N	о.	N4656						Well ID:		K5/6	ŝS		
Client:		HCCDC						Date:		22-6	- 2.2	-	
Site:		KIWEF &	ЕРАР					Field Tea	m.	FQ I	>1+		
Weather:		Fi-	e Su		1			neid led		Ĺ			
Water Le	vel D	ata (me	asured a	s met	rest	from Top o	of Casing	[ToC])					
a. Depth	n to N	Water To	able (ToC):	:	3	3.14~		NAPL pre	sent?			□Yes ⊡No	
b. Well S	ticku	up (ToC t	o ground le	evel)		0.61 -	~						
c. Total	Well	Length:			0	1-83~		NAPL Inte	erphas	e Depth:			
d. Deptł	۱ of ۱	Water C	olumn (c-	a):	l	5.69 m	.				17 -	<i>d</i> ²	
e. Casin	g Dio	ameter:			(V)	50~~~~	-			n volume.	$v = \pi$	$\frac{-4}{4} \times C -$	
Well Purg	e Inf	ormatio	n										
Purge Me	etho	d:	Micr	vpu	ک ر	e				Purge De	pth:	9.83	
Field Equ	ipme	ent:	18,7	si	\sim	ate Q	Inalist	y Me	te-	Start Time	:	(11100-	
Time	Vc Rer	noved (L)	.Temp (°C)	pł	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	iments (co	lour, o	dour, turbidity, etc.	
11:15		t	19.8	6.9	3	-98.4	71.3	10.23	C	leor, ~	o od	dur	
11:28		5	20.2	6.	56	7 1	91.0	7.46	Cle	er, orga	2n c	clos	
11:38	(0	20.2	6.8	5	-76.7	84. v	6.97	٤,				
11:48	١	5	22.6	6.8	5	- 78.2	\$3.G	7.27	`				
Purging sho stabilised m % and temp	iuld co leasur beratu	ontinue for ements ar ure is withir	a minimum e achieved. 1 0.5 °C over	of thre Stabili two su	e bo ised r cces	re volumes c measuremer sive measure	and stabilise nts for pH are ements.	d measurem e within 0.1 p	nents ar oH units;	e achieved o EC, redox ar	r until the nd dissolv	e bore purges dry and ved oxygen are within 10	
Well Sam	pling	g Inform	ation										
Time	Vc Rer	olume noved _(L)	Temp (°C)	pł	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (co	lour, jo	dour, turbidity, etc.	
11:48	١	5	22.6	6.8	5	-782	83.9	7.27	cle	cr, or a	(ch L	odow	
											د		
	_												
End Time	:		I	I		Depth to	Water To	able:					
Sample (Colle	ction Su	mmary			L	4880						
	Primo	ary Samp	ole ID			Intro	a-lab Sam	nple ID		Ir	nter-lak	Sample ID	
14	51	65					<u> </u>						

Project N	o. N4656					Well ID:		KS SS			
Client:	HCCDO	;				Date:		22-	6-2	2	
Site:	KIWEF 8	EPAP						1=0	T- 1-+	-	
Weather:	Fin	e Sur	~~~				arri.	(- (50		
Water Lev	vel Data (m	easured a	s metres	from Top	of Casing	[ToC])					
a. Depth	n to Water T	able (ToC)	:	3.76	^	NAPL pre	sent?	2	[□Yes No	
b. Well S	tickup (ToC	to ground l	evel)	0.59~	~			_			
c. Total V	Well Length			9.49~	•	NAPL Inte	erpha	se Depth:			
d. Deptr	n of Water C	Column (c-	·a):	5.73	~					d ²	
e. Casin	g Diameter:		4	50~~~			We	ell Volume:	$V = \pi \cdot$	$\frac{1}{4} \times c =$	
Well Purg	e Informatio	n	l								
Purge Me	ethod:	Mico	purce					Purge De	oth:	9.49	
Field Equ	ipment:	18, 4	ري \S	aler Q.	rality	neter		Start Time	:	10:21	
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Con	nments (co	lour, oc	lour, turbidity, etc.	
025	1	19.1	8.99	49.8	10.9	10.17	Cle	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	od on	/	
035	5	20.4	7.15	-151.6	59.4	685	685 Clear and odow				
1045	(0	20.4	7.13	-165.4	40.6	6.44	4 Clear and organic				
lots	15	20.6	7.12	166.2	420	6.61	C	lear, or	رە		
Purging sho stabilised m % and temr	uld continue fo easurements a perature is withi	r a minimum re achieved. n 0.5 °C over	of three bo Stabilised	Dre volumes o measuremer	L and stabilise hts for pH ar ements	d measuren e within 0.1 p	l nents a oH unit:	re achieved o s; EC, redox an	r until the d dissolve	bore purges dry and ed oxygen are within 10	
Well Sam	pling Inform	ation						* 1964 # 1 * * * * * * **			
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oc	dour, turbidity, etc.	
1055	15	20.6	7,2	-166.2	47.0	6.61	a	20, 0-S	en.L	odow	
End Time				Death							
	Collection St	imman/				uple:					
	Primary Sam	ple ID		Intro	a-lab San	nple ID		ir	iter-lab	Sample ID	
le.	e KS	< <							_		

Project N	No.	N4656					1	Well ID:		KSS	2			
Client:		нссрс					. ×,	Date:		22-6	- 22	2		
Site:		KIWEF &	EPAP					Field Too			1-			
Weather	r:	Fire	C Sun	-~4			<u> </u>	rieiù iec	4111.) (*)			
Water Le	evel D	ata (me	easured a	s mè	res	from Top	of Casing	[ToC])						
a. Dept	h to V	Vater To	ble (ToC)	:	2	2.89,	<u>^</u>	NAPL pre	sent?		[⊐Yes ZNo		
b. Well:	Sticku	p (ToC t	o ground I	evel)	C	7.65.	~							
c. Total	Well I	Length:			-	3.70	~	NAPL Inte	erpha	se Depth:				
d. Dept	h of V	Vater C	olumn (c-	·a):	Ĉ	0.81 ~	^		14/2		V	$d^2 \sim c$		
e. Casir	ng Dic	ameter:				50	~		¥ ¥ €		$v = n^{-1}$	$\frac{1}{4} \times \mathcal{L}$ –		
Well Purg	ge Inf	ormatio	n											
Purge M	ethoo	d:	Micre	»q~	8	e				Purge De	oth:	3.70		
Field Equ	Jipme	ent:	751	ہ ب	se	Que	An Me	ter I	C	Start Time	•	9:35		
Time	Vo Ren	lume noved (L)	Temp (°C)	pl	-1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, oa	lour, turbidity, etc.		
0947	l		18-1	6.0	12	66.7	10.1	7.14	Cle	er, no o	dow			
0951	2.	5	19.4	6.1	N	86.7	9.7	4-85	Ba	Brun, ruly, no odor				
1005		5	19-7	6-	70	900	9.0	4.92	Brow	Brinn, clear, no odom				
1006	7	-5	19.7	7.0	6	80.4	27.7	7.60	<i>'</i> -					
1010	8.	5	19.7	7.0	2	76-4	31-0	7.13						
Purging sho stabilised n % and tem	ould co neasure peratui	ntinue for ements are re is within	a minimum e achieved. 0.5 °C over	of thre Stabil two su	e bo ised r cces	re volumes o measuremer sive measur	and stabilise nts for pH are ements.	d measurem e within 0.1 p	nents ar DH units	e achieved or ; EC, redox an	until the d dissolve	bore purges dry and ed oxygen are within 10		
Well San	npling	Inform	ation			T		1						
Time	Vo Ren	lume noved (L)	Temp (°C)	pl	+	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, oa	lour, turbidity, etc.		
1010	8	.5	19.7	7.0	ን ኖ	76.4	31.0	7.13	Bru	رونای مد	-, ~.	edoer		
						i				``				
End Time)):		. <u></u>	I		Depth to	Water To	, able:						
Sample	Collec	ction Su	mmary			۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			L,					
	Prima	iry Samp	ble ID			Intro	a-lab Sam	ple ID		In	ter-lab	Sample ID		
k	KS SN													

Project N	o. N4656						Well ID:		K7	$\left(\right)$						
Client:	HCCDC	2					Date:		23-	6-	22					
Site:	KIWEF 8	EPAP					Field Tea		DH							
Weather:	Fin	e. su	<u>`^</u>				riela lea									
Water Lev	el Data (m	easured a	s mel	tres	rom Top o	of Casing	[ToC])									
a. Depth	to Water To	able (ToC):		4	.53m		NAPL pre	sent?	2	-	□Yes JINO					
b. Well St	lickup (ToC	to ground le	evel)	C	1.57 m				- - -		and a share and					
c. Total V	Veli Length:	:		(NAPL Inte	erpha	ise Depth:							
d. Depth	of Water C	Column (c-	a):	2	-13 m				And a second second		d ²					
e. Casing	g Diameter:				- 50~~			W	éll Volume:	V =	$\pi \frac{\alpha}{4} \times c =$					
Well Purg	e Informatio	on		L							· · ·					
Purge Me	ethod:	Mich	yu) a	? ~~				Purge De	epth:	6.66m					
Field Equi	pment:	18 40	<u>,</u> ;/ /		er Qu	arity	Mele	/	Start Time	∋:	0730					
Time	Volume Removed	Temp (°C)	pl	H	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Cor	nments (co	olour,	odour, turbidity,					
0743	<u> </u>	15.8	Ŝe	ır	-2206	20.4	6.29	ac	e ure a		a i .					
1745	2.5	19.0	7.6	-	-231.0	19.0	6.52	ندم ا	ver, cles-		waaa carb					
0754	5	19.1	7.	<u>רר</u>	-162.8	16.3	5.64		<u>y, cu</u>	<u> </u>	· · · ·					
0800	7.5	19.2	7	36	-169.3	11.2	5.92		•. •							
0800	9	19.1 7.1		25	-1710	12.6	6.03	-	L.	<i>د ب</i>						
	12011	Da	910	55												
1		- 2 0	4 te													
Purging show stabilised me % and temp	uld continue fo easurements a erature is withi	r a minimum re achieved. n 0.5 °C over	of thre Stabil two su	ee bo lised r Joces	re volumes c neasuremer sive measure	 and stabilise nts for pH ar ements.	d measurem e within 0.1 p	l nents c oH unit	re achieved c s; EC, redox a	or until nd diss	the bore purges dry o olved oxygen are wi					
Well Sam	pling Inform	nation	1			50	1	i								
Time	Removed (L)	Temp (°C)	p	H	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (co	olour,	odour, turbidity,					
0510	9	19.1	7. 3	35	-171.8	12.6	6.03	Cu	ey clea	r, e	sen coden					
									<u> </u>		U					
End Time:			I		Depth to	v Water T	able:	<u> </u>			r-lab Sample 1D					
Sample C	Collection Su	ummary			<u> </u>	in de la compañía de		1	· .							
F	rimary Sam	ple ID			Intro	a-lab San	nple ID			nter-l	ab Sample ID					
	K7/1			į į	<u>э</u> р.		u.,									

1.10

40

Project N	No. N465	6				Well ID:		K7/L	420		
Client:	НСС	DC				Date:		23-6	5-22		
Site:	KIWE	F & EPAP			- · _ ····	- Field Tec	ım.	DIT			
Weather	ः ह	tore S.	~~~y			neid rec	4111.				
Water Le	vel Data (measured a	as metre	s from Top	of Casing	[ToC])					
a. Dept	h to Water	Table (ToC):	4.95~		NAPL pre	sent?		[□Yes □₩o	
b. Well:	Stickup (To	C to ground	level)	0.26~	•						
c. Total	Well Leng	h:		8.99~		NAPL Inte	erpha	se Depth:			
d. Dept	h of Water	Column (c	-a):	4.04~	^					d ²	
e. Casir	ng Diamet	er:		50~~			we	olume:	$V = \pi \cdot$	$\frac{1}{4} \times c =$	
Well Purg	ge Informa	tion	d			· .				· · · · · · · · · · · · · · · · · · ·	
Purge M	ethod:	Mich	ince					Purge De	pth:	8.99~	
Field Equ	vipment:	IP. ~	15. C	sale Q) inerlation	met	e	Start Time	:	0840	
Time	Volume Remove (L)	d Temp (°C)	рН	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Con	nments (co	lour, oc	dour, turbidity, etc.	
0851	1	20.9	271	-204.9	9.4	6.94	(1)		Ca. 6 . 6.1	مردن أي	
0901	5	22.3	6.88	-176.8	25.3	4.48	CY	er. ~0	CÁO	·	
0912 10		22.4	6.83	- 16444	35-5	6.32	ĸ	(
0932	15	229	6.79	1-160.8	34.9	6.70		در	~		
1											
Purging sho stabilised n % and tem Well San	puld continue neasurement perature is wi polina Info	for a minimum are achieved thin 0.5 °C ove	n of three b I. Stabilised r two succ	d measuremen essive measur	and stabilise nts for pH ar ements.	ed measurem e within 0.1 p	nents ar oH units	e achieved or ; EC, redox an	r until the Id dissolve	bore purges dry and ed oxygen are within 10	
	Volume	Temp		Redox	EC			144 m. i	· · · · · · · · ·		
Time	Remove (L)		рH	(mV)	(µ\$/cm)	(ppm)	Con	nments (co	lour, oc	dour, turbidity, etc.	
ig 3 2	15	22.9	6.71	-160.8	34.9	6.70	C	eer, n	0 0	cloim	
	·····		 								
End Time	e:			Depth to	o Water⊺	able:					
Sample	Collection				a lah san				3- 6- 22 It $Pres Droto Droto Droto Droto Ime: V = \pi \frac{d^2}{4} \times c =e Depth: 8.99Time: 0640s (colour, odour, turbidity, ev \leq c. c \leq d \leq mNo CéloiseVed or until the bore purges dry anddox and dissolved oxygen are withs (colour, odour, turbidity, en \circ CéloiseInter-lab Sample IDInter-lab Sample ID$		
1/	7/14				<u>u-iup sun</u>				Ditter-lab Sample ID		
	· / 4/										

Project N	lo. N4656						Well ID:		K71L	+ 5		
Client:	HCCDC						Date:		23-(5-22		
Site:	KIWEF &	EPAP							DIA	5.1		
Weather	: Fin	e, Sur	~~y				riela lea	im:				
Water Le	vel Data (me	easured a	s met	res f	irom Top o	of Casing	[ToC])			r · · ·		
a. Dept	h to Water To	able (ToC):	:	\$	5.98,	~	NAPL pre	sent?			Yes No	
b. Wells	Stickup (ToC t	o ground le	evel)	1	0.50	\sim						
c. Total	Well Length:			i	3.73	3.~	NAPL Inte	erpha	se Depth:			
d. Dept	h of Water C	olumn (c-	a):		7.7.	5~		\\/a	Volumo:	<i>V</i> ^d	¹² × a =	
e. Casir	ng Diameter:				50~	~			ar volume.	$v = n - \frac{1}{2}$	$\frac{1}{4} \times C$ –	
Well Purg	ge Informatio	n										
Purge M	ethod:	Miz	$\sim \rho$	سر	ze				Purge De	pth:	13.73~	
Field Equ	vipment:	IP,	<u>4</u> 5	I	wate	- lea	ity M	eter	- Start Time	:	1000	
Time	Volume Removed (L)	Temp (°C)	pł	-1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (co	lour, od	our, turbidity, etc.	
1010	ì	21.0	6.8	Ď	-79.6	484.7	7.07	0	cor, ~	o ed	ن س	
1020	5	21.6	6.7	6	-803	148-1	5.70	Vellow muchy, no odaw				
1030	10	21.5	6.8	Š2	-77.3	2315	607	Yellew, muchy, no odur				
104 4	15	21.6	6.8	4	-71.4	382.1	5-71	Yeu	in mole	, NO 0	dar	
1055	20	215	6.8	16	-704	219-1	4.73	Yellow, nurty to order				
			r -									
Purging sho stabilised n	ould continue for neasurements ar	a minimum e achieved.	of thre Stabil	e boi ised r	re volumes c measuremer	and stabilise	d measurem e within 0.1 p	hents ar oH units	e achieved o ; EC, redox ar	r until the nd dissolve	bore purges dry and ad oxygen are within 10	
% and tem Well San	perature is withir nolina Inform	<u>0.5 °C over</u> ation	two su	Icces	sive measure	ements.			-			
	Volume	Temp			Reday	EC	Diss On					
Time	Removed (L)	(°C)	pł	Η	(mV)	(µS/cm	(ppm)	Con	nments (cc	lour, od	lour, turbidity, etc.	
1055	20	21.5	6.	86	-70.4	219.1	4.73	Ye	Uw mor	the no	odur	
)'		
										-		
End Time	e:	L	ł		Depth to	b Water To	able:					
Sample	Collection Su	mmary			L			· · ·				
	Primary Sam	ple ID			Intro	a-lab Sam	nple ID		Ir	nter-lab	Sample ID	
	K7/45								-		····	

Project N	1 0.	N4656						Well ID:		K71	22	,
Client:		HCCDC						Date:		23-	6 - Z	22
Site:		KIWEF &	EPAP					Field Tee				
Weather	:	Fire	5~~~	<u> </u>				riela lec	im;		- 1-	
Water Le	evel D	ata (me	asured a	s met	res f	rom Top	of Casing	[ToC])				
a. Dept	h to \	Water Tc	ble (ToC)		6	. 24~		NAPL pre	sent?			□Yes ⊡No
b. Wells	Sticku	up (ToC te	o ground le	evel)	0	.66m						
c. Total	Well	Length:			٢	3.95~		NAPL Inte	erpha	se Depth:		
d. Dept	h of \	Nater Co	olumn (c-	a):		2.71 -	~		14/			<i>d</i> ²
e. Casir	ng Die	ameter:			પ	0~~			vve	ell volume:	$V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge In	formatio	n									
Purge M	etho	d:	Bail	e						Purge De	oth:	6.24
Field Equ	uipme	ent:	IP,	ISI		water	Qualit	, moto	r	Start Time	:	1126
Time	Vc Rer	olume noved (L)	Temp (°C)	pł	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, o	dour, turbidity, etc.
		(-/										
					/							
					/	pr	\wedge					
					et	L						
		/										
Purging sho stabilised n % and tem	puld co neasur peratu	ontinue for ements are ure is within	 a minimum e achieved. 1 0.5 °C over	of thre Stabili two su	e bor sed r cces:	L re volumes c neasuremer sive measur	l and stabilise nts for pH ar ements.	 ed measurem e within 0.1 p	l nents ai pH units	re achieved o ;; EC, redox an	r until the d dissolv	e bore purges dry and ved oxygen are within 10
Well San	npling	g Inform	ation	1			50		r			
Time	Rer	noved	Temp (°C)	pł	+	Redax (mV)	lµS/cm	Diss.O2 (ppm)	Con	nments (co	lour, o	dour, turbidity, etc.
					_	~ Q ~	1					
							1					
				$\left[\mathcal{N} \right]$	e							
											·	
		/										
End Time):		.	i		Depth to	b Water T	able:				
Sample	Colle	ction Su	mmary			L			I			
	Primo	ary Samp	ole ID			Intro	a-lab San	npie ID		Ir	iter-lak	o Sample ID
	<u> </u>										~	

Project N	lo.	N4656					1. Korg	Well ID:	-	K7/2	2 5			
Client:		HCCDC						Date:		23-0	5-2	2		
Site:		KIWEF &	EPAP							0.1	. 0			
Weather	:	Fin.	e. s.		10			Field Tea	m:		-(
Water Le	vel D	ata (me	asured as	s met	res f	irom Top o	of Casing	[ToC])						
a. Depti	h to V	Vater Ta	ible (ToC):		6.	ylen		NAPL pre	sent?			□Yes □No		
b. Wells	Sticku	p (ToC to	o ground le	evel)	0.	66~	н.							
c. Total	Well	Length:			11	.40~	~	NAPL Inte	erpha	se Depth:				
d. Depti	h of V	Vater Co	olumn (c-a	a):	L	t.96 m	~					<i>d</i> ²		
e. Casir	ng Dia	ameter:				50~~	-		We	olume:	$V = \pi$	$\frac{1}{4} \times c =$		
Well Purg	ge Inf	ormatio	n											
Purge M	etho	d:	Microp	ωç	2					Purge De	pth:	11.40		
Field Equ	Jipme	ent:	YSIL	- al	~ (Rinalit	n Met	e, IC		Start Time	e:	11:45		
Time	Vc Rer	olume noved (L)	Temp (°C)	pł	4	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Con	nments (cc	(colour, odour, turbidity, e			
1157		1	20.9	6-	74	-34-2	357.0	8-24	Bru	in michy	10 50	u		
									We	11 dry o	fer 1	litre		
Purging sha stabilised n % and tem	L Duld Co neasur Iperatu	ontinue for ements are ire is within	a minimum e achieved. 10.5 °C over	of thre Stabil two su	e boi ised r cces	re volumes c measuremer sive measure	and stabilise nts for pH ar ements.	d measurem e within 0.1 p	l nents a oH units	re achieved c ;; EC, redox ar	r until the nd dissolv	bore purges dry and ed oxygen are within 10		
Well San		lintorme	ation			1	FC							
Time	Rer	noved (L)	Temp (°C)	pł	-1	Redox (mV)	(µ\$/cm)	Diss.O2 (ppm)	Con	nments (cc	olour, oo	dour, turbidity, etc.		
1157	1157 1 20.9 6-						357.0	8-24	Br	wn , mu	hy, c	10 odow		
							-							
End Time)):		I			Depth to	Water Te	able:						
Sample	Colle	ction Su	mmary			J			L	No.41				
	Primo	ary Samp	ole ID			Intro	a-lab San	nple ID		lr	nter-lab	Sample ID		
κ-	7 2	S					المهيدة			_	-			

Project N	1 0.	N4656						Well ID:		KS/	+	
Client:		нссрс						Date:		23-6	5-22	-
Site:		KIWEF &	EPAP					Field Tea		D1+		
Weather	:	Fi-	e Su	~~~	1			riela ieu				
Water Le	vel D	ata (me	easured a	s met	rest	irom Top o	of Casing	[ToC])			-	
a. Dept	h to \	Vater To	ble (ToC)	:	4	(. 81 ~		NAPL pre	sent?	2	[□Yes ₽No
b. Wells	Sticku	p (ToC t	o ground le	evel)		0.61~						
c. Total	Well	Length:			ç	5.601	~	NAPL Inte	erpho	ise Depth:		
d. Dept	h of V	Vater C	olumn (c-	a):		6.791	\sim					d ²
e. Casir	ng Dia	ameter:				50~	\sim		<u> </u>	eil volume:	$V = \pi$	$\frac{1}{4} \times c =$
Well Purç	ge Inf	ormatio	n								1987	
Purge M	etho	d:	Mic	مهمد	se					Purge De	oth:	5.60~
Field Equ	Jipme	ent:	IS,	للم	-e-	Querit	y Me	Ler		Start Time	:	1300
Time	Vc Rer	olume noved (L)	ſemp (°C)	pl	Ч	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Cor	nments (co	lour, oc	lour, turbidity, etc.
1325		1	20.7	7.	86	40.0	6.0	8,14	C	lear , ~	s od	
1330		2	20.9	6.7	13	77.2	3.9	6.70		l)	
									Dr	n aller	26	-
										9 the		
										-		
Purging sho stabilised n % and tem	Duid co neasur peratu	ontinue for ements ar ure is within	a minimum e achieved. 1 0.5 °C over	of thre Stabil two su	e bo ised r icces	re volumes c measuremer sive measure	and stabilise hts for pH ar ements.	d measuren e within 0.1 p	nents o oH unit	re achieved o s; EC, redox ar	r until the d dissolve	bore purges dry and ed oxygen are within 10
well san	npiinę	olume	ation				FC				·······	
Time	Rer	noved (L)	Temp (°C)	p	Н	Redox (mV)	(µ\$/cm)	Diss.O ₂ (ppm)	Cor	nments (co	lour, oc	dour, turbidity, etc.
1330		2	20.9	6.7	73	77.2	3.9	6.7	0	ear,	000	loc
End Time	ə:		•	-		Depth to	water T	able:				
Sample	Colle	ction Su	mmary									
	Primo	ary Samp	ole ID			Intro	a-lab San	nple ID		Ir	nter-lab	Sample ID
K	5	4					-					

Project No	. N4656					Well ID:		K81	5~	
Client:	HCCDC					Date:		24-6	5-22	
Site:	KIWEF 8	EPAP						D'	*	
Weather:	F.~e	5	5				m:			
Water Leve	el Data (me	easured c	s metres	from Top	of Casing	[ToC])				
a. Depth	to Water To	ble (ToC)	: (4.85~		NAPL pres	sent?			Yes 🗖 No
b. Well Sti	ckup (ToC t	o ground l	level)	1.79~						
c. Total W	ell Length:			8.03m		NAPL Inte	rphase	Depth:	/	
d. Depth	of Water C	olumn (c	-a):	3.18~						2
e. Casing	Diameter:			Some			Well V	olume.	$V = \pi \frac{u}{c}$	$\frac{1}{4} \times c =$
Well Purge	Informatio	on								
Purge Met	hod:	Min	ase un	Scarr	tomot -	to baile	- i P	urge De	oth:	8-03-
Field Equip	ment:	Yet		R Din	in Mo	ier 71	° St	art Time	•	15730
Time I	Volume Removed	Temp (°C)	pH	Redox (mV)	EC (µ\$/cm	Diss.O ₂	Comm	ents (co	lour, od	our, turbidity, e
550	(L)]		916	-35 0	1491	7.15	(LPC	- ~0	od	۲
0740	2.5	16.8	8.25	-79.4	1565	5.26		`	`	•
0750	5	11 6	8 21	-841	1592	4 99			• •	~
	wr11	Par al	6. x ·		1110	(•)[
		<u> </u>								
Purging should stabilised med % and tempe Well Samp	d continue for asurements ar rature is withir ling Inform	a minimum e achieved n 0.5 °C over ation	of three b Stabilised two succe	ore volumes o measuremer essive measure	and stabilise hts for pH ar ements.	ed measurem e within 0.1 p	ents are c H units; EC	achieved a C, redox ar	r until the nd dissolve	bore purges dry an ed oxygen are withi
	Volume	Temn		Reday	EC		<u> </u>			
Time F	(L)	(°C)	рН	(mV)	(µ\$/cm)	(ppm)	Comr	ients (co	olour, oc	dour, turbidity, e
0756	5	16.8	8.21	-84.6	1592	4.61	ديو	×, ^	o och	u
								•	_	
	-									
	· <u>.</u>									
×										
End Time:		L		Depth to	Water T	aple.				
	1					~. <u>~</u> .				
Sample Co	llection Su	mmarv						÷		

.

Project N	lo. N4656					Well ID:		K815	SE	
Client:	HCCDC	:				Date:		24-6	-22	-
Site:	KIWEF 8	EPAP				Field Tea	ım.	DH		
Weather	: Fin,	و 20	<u>`~y</u>							
Water Le	vel Data (m	easured a	s metres	from Top o	of Casing	[ToC])		-		
a. Dept	h to Water To	able (ToC)	:	4-16 m		NAPL pre	sent?			□Yes ⊡No
b. Wells	Stickup (ToC	o ground l	evel) (.73~	-					
c. Total	Well Length:		Ĺ	5.36~	~	NAPL Inte	erpha	se Depth:		
d. Dept	h of Water C	olumn (c-	-a):	1.20	\sim		141-			d ²
e. Casir	ng Diameter:			50~	~		VV E	eil voiume:	$v = \pi$	$\frac{1}{4} \times C =$
Well Purg	ge Informatic	n								
Purge M	ethod:	Mi	worw	e				Purge De	pth:	5.36m
Field Equ	uipment:	IP.	`(SI	Water	Qua	Til M	ete	Start Time	:	8:20
Time	Volume Removed	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Con	nments (co	lour, oc	dour, turbidity,
0834	1	16.6	9,13	- 232.6	32.7	6.51	Ci	par, no	odo	ur -
0840	2.5	19.3	10.03	-242.8	76.1	2.05	-			•
0845	5	19.3	10.21	- 224.2	94.8	1.92		د ،		•
0851	7.5	19.3	(0.28	-249.8	1531	1.68		× < .	,	~
0900	10	19.4	(0.32	-262.8	2688	1.05		* .	•	-
Purging sho stabilised n % and tem	ould continue fa neasurements a perature is withi	r a minimum re achieved n 0.5 °C over ation	n of three bo . Stabilised r two succes	ore volumes c measuremer ssive measure	and stabilise hts for pH ar ements.	d measurem e within 0.1 p	nents ai oH units	re achieved o ;; EC, redox ar	r until the Id dissolv	e bore purges dry ed oxygen are wi
weii san	Volume	Tomp		Rodov	EC	Dire Or				
Time	Removed (L)	(°C)	рН	(mV)	(µS/cm)	(ppm)	Con	nments (co	lour, oc	dour, turbidity,
0900	10	19.4	10.32	-262.8	2688	1.05	C	ler no	o di	
	·					-				
				1	J	1				
End Time	e:			Depth to	o Water T	able:				
End Time Sample	e: Collection St	ummary		Depth to	o Water T	able:				

Project M	No.	N4656						Well ID:		Kall	ιω				
Client:		HCCDC						Date:		24-6					
Site:		KIWEF &	EPAP							D					
Weather	r:	Fire	Sun	~~				Field led	am:	MA C	-7-				
Water Le	evel [Data (me	asured a	s met	res	irom Top	of Casing	[ToC])							
a. Dept	h to	Water Tc	ible (ToC):			2.03~		NAPL pre	esent?			Yes CNo			
b. Well	Stick	up (ToC te	o ground le	evel)		0.20m	~								
c. Total	Well	Length:			١	11.64,	~	NAPL Inte	ərphas	e Depth:					
d. Dept	h of	Water Co	olumn (c-	a):	(9.61	~		- t	/		2			
ə. Casir	ng Di	ameter:				50,	~		We	Il Volume:	$V = \pi \frac{u}{4}$	$\frac{1}{c} \times c =$			
Vell Pur	ge In	formatio	n						_/						
Purge M	letho	d:	Mic	νr.	\sim	0				Purge Der	oth:	1) (1,			
ield Equ	Jipm	ent:	IP 4	57	لا ب	ater Q	uglita	nete	~	Start Time	:	0930			
Time	Volume Removed Temp (°C) (°C)					Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Com	iments (co	lour, od	our, turbidity, etc.			
19:39			17.4	8.7	0	-59.2	106.4	7.13	(10	lear					
9.117		5	י י ר.רו	7.0	18	-746	57.7	7.16		it will while in a state					
10.05		<u> </u>	18.12	7.2	9	-88.3	210.6	5.01	Ligh	It will all will be to the the					
0.10			18.0	7.1	<u>,</u> 8	- 87.11	ling in	5.96		y your,	I.I.I	y over no daw			
10-10 in: 10	10	<u>, </u>	to 1	7.18	0	-80 7	Hur P	6.77	1 gug	year, 19	vinner via hias	y clar, no oud			
0.18)	10:1	1 10		00.2	1040	712	ngu	yeuwi	MMNE	My CREAT 10 000			
Purging sha tabilised r	ould c neasu	continue for rements are	a minimum e achieved.	of thre Stabili	e boi sed r	re volumes o measuremer	and stabilise ants for pH are	d measuren e within 0.1 p	nents are oH units;	e achieved or EC, redox an	until the t d dissolve	oore purges dry and d oxygen are within 10			
Vell San	nplin	g Inform	ation	1110 30											
Time	Vo Rei	olume moved (L)	Temp (°C)	pł	+	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Com	iments (co	lour, od	our, turbidity, etc.			
0.28		20	8-1	7.1	Š	- 88.3	104.8	472	ligh	t yellow,	relativ	elyder, no odu			
ind lime	∋: • ···					Depth to	o Water To	able:							
ample	Prim	ary Samr	ble ID			Intro	a-lab Sam	De ID		In	ter-lab s	Sample ID			
	kal	41.										· · · · · · · · · · · · · · · · · · ·			

Project N	No.	N4656				,		Well ID:		KAIS	LE	4
Client:		HCCDC						Date:		24-6	5-22	-
Site:		KIWEF &	EPAP					Field Tec	ım.	DH.L	2	
Weather	:	Fire,	sunny	l				Tield rec	4 111.			
Water Le	evel D	ata (me	asured d	is me	res	from Top	of Casing	[ToC])			r 	
a. Dept	h to V	Vater To	ible (ToC)	:	1	.88 m		NAPL pre	esent?		[TYes Pro
b. Well	Sticku	p (ToC t	o ground l	evel)	L	5.28n						
c. Total	Well I	Length:			1	11.60	~	NAPL Inte	erpha	se Depth:		
d. Dept	h of V	Vater Co	olumn (c-	-a):		9.72	~~		14/ -			d ²
e. Casir	ng Dic	ameter:			٤		~		VVE	ell v <i>o</i> łume:	$V = \pi \cdot$	$\frac{1}{4} \times c =$
Well Pur	ge Inf	ormatio	n									
Purge M	ethod	d:	Mic	مدم. ہ	se					Purge De	pth:	11.60m
Field Equ	Jipme	ent:	IP, -	ISI	م	orter Q	uci.ty	Meter		Start Time	:	1155
Time	Vo Ren	lume noved (L)	Temp (°C)	p	Ч	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Com	nments (co	lour, oc	dour, turbidity, etc.
1204		١	19.7	7	76	-132.1	5+2	3.49	a		odow	-
1215		5	(9.6 7.01 -96.8 7.9 1.94							¢		
1230	1	0	19.5	6.0	78	-98.4	16-4	1.77		İ	11	
1244	1	5	19.5	6.0	ì	-177.1	440.9	0.85	11		11	
1255	20	3	19.5	6.0	V	- 124.6	692.4	0-37	N(11	
			~									
Purging sho stabilised n % and tem	buld co neasure peratui	entinue for ements are re is within	a minimum e achieved. 0.5 °C over	of thre Stabil two su	e bo ised i icces	l pre volumes c measuremer ssive measure	and stabilise ats for pH are ements.	1 d measurem 9 within 0.1 p	nents ar oH units	e achieved o ; EC, redox an	r until the d dissolve	bore purges dry and ed oxygen are within 10
Well San	npling		ation	1		1	50		1			
Time	Time Volume Temp (°C)					Redox (mV)	μS/cm	Diss.O2 (ppm)	Corr	nments (co	lour, oc	dour, turbidity, etc.
1255	1255 20 19.5 6					- 124.6	692.4	0-33	Cle	var no od	ar	
						-						
End Time	e:			L		Depth to	Water To	able:				
Sample	Collec	ction Su	mmary			.1			L			
	Primary Sample ID					Intro	a-lab Sam	ple ID	·	In	iter-lab	Sample ID
	100	1/20					·			-		

1

ź

4

Project N	No. N4656					Well ID:		Kq/	45	
Client:	НССД	с				Date:		24-6	5-2	2
Site:	KIWEF	& EPAP				- Field Ter	ım.	DH	P	
Weather	: F.~	e, su	~~~			Tield Tet	4111.	• /	A.	
Water Le	vel Data (n	neasured a	is met	res from Top	of Casing	[ToC])			T	
a. Dept	h to Water	Table (ToC)	:	1.55~	-	NAPL pre	esent?	2		∃Yes ⊒ N o
b. Wells	Stickup (ToC	to ground	level}	0.251	~					
c. Total	Well Lengt	ו:		5.25	~	NAPL Inte	ərpha	ise Depth:		
d. Dept	h of Water	Column (c	-a):	3.70	~		14/		17	d ²
e. Casir	ng Diamete	r:		50~~	~		VV (eir volume:	$v = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Informat	ion								
Purge M	ethod:	Mro	~ p~~	re				Purge De	pth:	5.25
Field Equ	vipment:	IS' ,	/SI	water a	Kuartin	y ret	_ھ	Start Time	:	1040
Time	Volume Removec (L)	Temp (°C)	pł	ł Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, o	dour, turbidity, etc.
1050	t	17-6	7.1-	7 -105.5	87.1	3. 74	Core	ey, pu	rky	, no cdow
1051	2.5	17.5	7.1	3 -119.8	73.0	2.39	t	J. ,	t	
1056	5	16.9	6.90	3 -116.8	54.3	1.78	(er		
1104	7.5	16.9	7.0	0 -12.2	89.2	4.32	~`			11
1110	<u>[</u> 0	17.1	6.8	7 -144.7	2967	0.54	~	<u>`</u>		11
									5	
Purging sho stabilised n % and tem	ould continue f neasurements perature is with	or a minimum are achieved nin 0.5 °C ove	n of three 1. Stabili r two sue	e bore volumes sed measureme ccessive measu	and stabilise ents for pH ar rements.	ed measuren e within 0.1 p	nents a oH units	re achieved o s; EC, redox ar	r until the nd dissolv	e bore purges dry and red oxygen are within 10
Well San		nation					1			
Time	Volume Removea (L)	Temp (°C)	pł	H Redox (m∨)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, o	dour, turbidity, etc.
1110	10	17.1	6.8	9 -1447	2967	054	1.	١		/ •
										·····
End Time	e:		1	Depth t	o Water T	able:				
Sample	Collection S	ummary		I	·		1			
	Primary Sar	nple ID		Intr	a-lab San	nple ID		Ir	nter-lab	Sample ID
K	9/48									

Project N	lo. N4656						Well ID:		K9[2	$-\omega$	
Client:	HCCDC						Date:		24-6	- 22	
Site:	KIWEF &	EPAP					Field Tec	ım.	D14 6	-9	
Weather	: Fine	Sur.	\sim						0 ([
Water Le	vel Data (me	asured as	s metr	res fi	rom Top o	of Casing	[ToC])				
a. Depti	n to Water Tc	ble (ToC):		(86m		NAPL pre	sent?		[IYes INo
b. Well S	Stickup (ToC to	o ground le	evel)	Ø	-28 m						
c. Total	Well Length:			3	- gum		NAPL Inte	erpha	se Depth:		
d. Depti	n of Water Co	olumn (c-	a):	2	1.04M			14/-		17 _ (d ²
e. Casin	g Diameter:			5	Ú mu			VVS	ai volume:	$v = \pi$ -	$\frac{1}{4} \times C =$
Well Purg	ge Informatio	n									
Purge M	ethod:	Micro	pur	se					Purge De	oth:	3, 90
Field Equ	vipment:	IP, Y	SI	$\boldsymbol{\omega}$	ater Q	ealth	Mete	/	Start Time	:	(300
Time	Volume Removed (L)	Temp (°C)	рH	1	Redox (m∨)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, oc	lour, turbidity, etc.
13:19	1	17.9	6.1	2	-74.8	66.9	4.35	Sic	ity mur	Ly n	, odar
13:20	2.5	(8.0	Co	5	-70.1	18.8	3-24	11	<u>j</u> . j	11	
1330	5	17.9	5.8	Ð	-105.4	23.2	1,69		. ~		
13:44	75	18.0	5.8	0	-125.6	29.7	1.07	1	N		1.1
						÷					
									· · · · · · · · · · · · · · · · · · ·		
Purging sho	uld continue for	a minimum e achieved	of three Stabilis	e bor sed m	e volumes c neasuremen	und stabilise ats for pH ar	d measuren e within 0.1 r	i nents a pH units	re achieved o s: FC, redox an	r until the	bore purges dry and ad oxygen are within 10
% and tem	perature is within	0.5 °C over	two suc	ccess	sive measure	ements.					
weil sun	Volume					EC		<u> </u>			
Time	Removed (L)	(°C)	рŀ	1	кеаох (mV)	(µ\$/cm)	(ppm)	Con	nments (co	lour, oc	dour, turbidity, etc.
13-44	75	18.0	5.8	0	-125.6	29.7	1.07	5)	ighty m	why,	no odow
								ļ	U J		
End Time	: 				Depth to	Water T	able:				
Sample	Collection Su	mmary									
	Primary Sam	ole ID			Intro	a-lab San	nple ID		Ir	nter-lab	Sample ID
K	9/2W										

Project N	lo. N4656				A.		Well ID:		336.	A			
Client:	HCCDC	:			3		Date:		28-6	5-2	2		
Site:	KIWEF 8	EPAP					Field Tee		DIT				
Weather	av	cast					neid ied	arri.	515				
Water Le	vel Data (me	easured a	s met	res	from Top	of Casing	[ToC])			de si			
a. Depti	n to Water To	able (ToC)		5	.40m		NAPL pre	esent	ş		□Yes	JNO	
b. Wells	itickup (ToC t	o ground le	evel)	C	D.80	-					/		
c. Total	Well Length:			6	.80~		NAPL Inte	ərpho	ise Depth:	/			
d. Depti	n of Water C	olumn (c-	a):	1	.40~	~					d^2		
e. Casin	g Diameter:			1.1	sorr			W	ell Volume:	$V = \pi$	$\frac{1}{4} \times c =$		
Well Purg	je Informatio	n											
Purge M	ethod:	Micro	we	e					Purge De	oth:	68	Dm	
Field Equ	ipment:	IP. V	155		water	Qual	ity N	lete	Start Time		08	00	
Time	Volume Removed (L)	Temp (°C)	pł	H	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Cor	mments (co	lour, o	dour, tur	bidity, etc	
0812	l	12.3	7.	31	-121.7	9.6	6.10	C	ileer, no o dow				
0822	2.5	17.9	7.1	9	-124.7	16.8	3.67	401	ellow, dear no adom				
0829	3	18.4	7.7	21	- 52.1	10.8	4.36	1			C -	× .	
0836	7.5	18.6	7.1	0	-66.8	14.2	5.01		ι.	• •	· ·		
0841	10	18.7	7.2	3	-61.2	15.1	4.99			-		•	
- Number													
Purging sho stabilised n % and tem	iuld continue fo leasurements a perature is within	 r a minimum re achieved. 1 0.5 °C over	of thre Stabili two su	e bo ised icces	 pre volumes o measuremer ssive measur	 and stabilise nts for pH ar ements.	 ed measuren e within 0.1	l nents c oH unit	are achieved o s; EC, redox an	until the d dissolv	e bore purg red oxyger	ges dry and n are within 1	
Well Sam	pling Inform	ation										- And	
Time	Volume Removed (L)	Temp (°C)	pł	H	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (co	lour, o	dour, tur	bidity, etc	
0841	10	18.7	7.2	3	-61.2	15.1	4.99	Чe	ellow, ch	or,	no ed	Dim-	
												~	
End Time	2-				Depth to	Water T	able:						
Sample (Collection Su	mmary			1								
	Primary Sam	ple ID			Intro	a-lab San	nple ID		Ir	ter-lab	Sample	e ID	
	336A					-					9		

Project N	lo. N4656						Well ID:		336B					
Client:	HCCDC						Date:		28-6-	22				
Site:	KIWEF &	EPAP					Field Tee		DIT					
Weather	ou	reast	-				rielu iec							
Water Le	vel Data (me	asured a	s met	res fro	om Top	of Casing	[ToC])				transfer of			
a. Depti	n to Water To	ible (ToC):		5	.80~	-	NAPL pre	sent?			Yes No			
b. Wells	Stickup (ToC t	o ground le	evel)	0	.SSM						/			
c. Total	Well Length:		-	12	. 39.	~	NAPL Inte	erpha	se Depth:	/				
d. Depti	h of Water C	olumn (c-	a):	6.	59-	n		141-	Valumat	V	$1^2 \times a =$			
e. Casin	g Diameter:			50	own			VVC	ni volume:	$V = \pi$	$\frac{1}{4} \times C =$			
Well Purg	ge Informatio	n												
Purge M	ethod:	Mic	o per	re					Purge Dep	th:	12.39-			
Field Equ	ipment:	IP, ·	15I	5	oste	Qualit	y ret	e	Start Time:		0905			
Time	Volume Removed (L)	Temp (°C)	pł	+	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (col	our, oc	lour, turbidity, etc.			
0916	1	19.1	6.9	6 -	\$6.3	518	3.27	Yel	ellow, sitty, no odder					
0928	5	19.0	6.7	12.	-92.2	2546	1.75	Dark even, silty, no odou						
0942	10	19.0	6.7	19 -	-93.7	6293	1.65	C		-	· ~.			
1000	15	18.9	6.8	5 -	-94.4	8891	1.78	Ciol	de dock	yell	as, no ocher			
1015	20	19.0	6.91	-	- 94.8	6288	2.01							
Purging sho stabilised n % and tem	Duld continue fo neasurements ar perature is withir	r a minimum re achieved n 0.5 °C over	of thre Stabili two su	e bore ised m iccessi	e volumes easureme ve measu	and stabilise nts for pH ar rements.	d measurer e within 0,1	nents a pH unit	re achieved or s; EC, redox and	until the d dissolve	bore purges dry and ed oxygen are within 10			
Well San	npling Inform	ation							i de la constante de la consta		and the second			
Time	Removed (L)	Temp (°C)	pl	н	Redox (mV)	μS/cm	Diss.O2 (ppm)	Cor	nments (col	our, oc	dour, turbidity, etc.			
1015	20	19.0	6,0	11 -	-94.8	6288	2.01	Gol	older y	ella	, no octour			
	·													
_														
End Time	ə:		-		Depth t	o Water T	able:							
Sample	Collection Su	mmary												
	Primary Sam	ple ID			Intr	a-lab Sar	nple ID		In	ter-lab	Sample ID			
	3363					-				-				

Project N	No. N4	1656						Well ID:		KIII3	SU	·		
Client:	но	CDC						Date:		28-6.	.22			
Site:	KI	WEF &	EPAP	_				Field Ter	im.	DU				
Weather	r: 0	ver	cas.)					rielu ieu	arri.	56				
Water Le	evel Dat	a (me	asured a	s met	rest	from Top	of Casing	[ToC])						
a. Dept	h to Wc	ater Ta	ible (ToC)			1.75r	a	NAPL pre	esent?			Yes Ho		
b. Well	Stickup	(ToC to	o ground l	evel)	Ċ	D.52~		r.				/		
c. Total	Well Le	ngth:			ſ	2.57	M	NAPL Inte	erphas	e Depth:	/			
d. Dept	h of Wc	ter Co	olumn (c-	-a):	10	0.82r	~		14/0		V	$t^2 \sim a^{-1}$		
e. Casir	ng Diam	neter:			5	50 mm			vve	il volume.	$v = n - \frac{1}{2}$	$\frac{1}{4} \times C$ –		
Well Pur	ge Infor	matio	n											
Purge M	lethod:	- 12 A	Micro	ngu	se					Purge De	oth:	12.57m		
Field Equ	uipment	f:	IP. Y	5	3	outer Q	centry	nete	-	Start Time	:	1050		
Time	Volu Remo (L)	me ived 1	Temp (°C)	pl	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (co	lour, oa	lour, turbidity, etc.		
1102	(18.4	7.4	4	-75.9	56.6	6.26	Clea	een no odow				
114	5		19.4	66	4	-103.1	204.4	3.98	Gar	I'd yellow, clear, no adau				
1126	10		19.5	6.	10	-114.5	241.2	3.82		i a co				
140	15	>	19.6	6.7	2	-113.1	162.5	2.58	8		-			
1152	20	د	19.6	6.7	4	- 119.0	159.8	2.41	L	· · ·	~ •	. C.,		
Purging sh stabilised r % and ten Well Sar	ould conti measurem nperature npling l i	inue for ients are is within	a minimum e achieved 1 0.5 °C over ation	of thre . Stabil r two su	e bo ised i	re volumes o measureme ssive measur	and stabilise nts for pH ar rements.	ed measuren e within 0.1 (nents ar pH units	e achieved or ; EC, redox an	r until the Id dissolve	bore purges dry and ed oxygen are within 10		
	Volu	me .	Temp			Redox	EC	Diss.O2				· · · · · · · · · · · ·		
lime	Remo (L))	(°C)	pi	-1	(mV)	(µ\$/cm)	(ppm)	Con	iments (co	lour, oc	our, turbiality, etc.		
1152 20 19.66.7					4	-119.0	159.8	2.41	Cial	alyelo	ما رد	et, no edoc		
End Time	e:					Depth to	 o Water T	able:						
Sample	Collect	ion Su	mmary											
	Primary	Samp	ole ID			Intr	a-lab San	nple ID		In	nter-lab	Sample ID		
K	_n[]	360				QC	2			Q	C21	9		

Project No. N4656								Well ID:		KII	3E			
Client:	нс	CDC				_		Date:	}	28-1	6-22			
Site:	KI	WEF &	EPAP					Field Tea		DF	+			
Weather	: 0.	rero	ost					Held led						
Water Le	evel Dat	a (me	asured a	s metr	es fr	om Top o	of Casing	[ToC])			_			
a. Dept	h to Wa	iter Ta	ble (ToC):	:	١.	45m		NAPL pre	esent?		[□Yes □No		
o. Well	Stickup	(ToC to	o ground le	evel)	0	.51~								
c. Total	Well Lei	ngth:			5	48-		NAPL Inte	erpha	se Depth:	/			
d. Dept	h of Wa	iter Co	olumn (c-	-a):	4	03-	-		с — - те с.	/	/	d ²		
e. Casir	ng Diam	eter:				Some	-		We	ell Volume	$V = \pi$	$\frac{1}{4} \times c =$		
Vell Pur	ge Infor	matio	n	-										
ourge M	ethod:		Micro	purg	~					Purge De	epth:	+220-5.4		
ield Equ	Jipment	1	IP.	TSI	5	atu (Reality	1 Mete	1	Start Tim	e:	1220		
Time	Volui Remo (L)	me ved	Temp (°C)	рH		Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Con	nments (co	olour, oc	lour, turbidity, etc.		
230	1		18.4	7.4	4-	201.2	7.7	3.61	Ciear, orcanic odow					
232	2.5	5	18.4	7.00	1.	-2209	8.5	8.24	n					
241	5		18.2	7.0	4	-216.0	5.6	2.89	h li li					
249	7.8		18.3	69	5	7003	8.6	2.86	Car	En min	ek.	ner a la polici		
258	10		18.3	1.9	3 -	199.2	10.2	2.97		i i	. Mr	organe tota		
-				0.	-									
orging shi tabilised r & and tem	l ould conti neasurem iperature i	nue for ents are is within	a minimum achieved. 0.5 °C over	of three Stabilis	e bore ed m ccessi	volumes o easuremer ve measur	and stabilise nts for pH are ements.	d measuren e within 0.1 p	nents a oH units	re achieved s; EC, redox c	or until the Ind dissolv	bore purges dry and ed oxygen are within 10		
Nell San	npling lr	nformo	ation											
Time	Volui Remo (L)	me ved	Temp (°C)	рH	1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (c	olour, oc	dour, turbidity, etc.		
258	10	•	18.3	6.97	3 -	-199.3	10.2	2.97	Co	ey, mot	y, or	genic odow		
		L												
							1							
nd Time	e:					Depth to	o Water T	able:						
	100 March 100	8 6							112					
ample	Collecti	on Su	mmary								-			

12.0

Project N	lo. N4656						Well ID:		K121	100		
Client:	HCCDC						Date:		1-7-	22		
Site:	KIWEF 8	EPAP					Field Ter		DI-	t		
Weather	: Over	1051					rield led	an.				
Water Le	vel Data (me	easured a	is met	res fr	om Top o	of Casing	[ToC])		nga at Kr			
a. Depti	n to Water To	able (ToC)	:	0	.99~	8	NAPL pre	senta	2	ſ	Yes No	
b. Wells	Stickup (ToC t	o ground l	evel)	D	.29~				-			
c. Total	Well Length:			3.	.73~	-	NAPL Inte	erpha	ise Depth:	/		
d. Depti	h of Water C	olumn (c	-a):	2	2.74	~					<i>d</i> ²	
e. Casir	g Diameter:				Som	-		VV	eli volume:	$V = \pi$	$\frac{1}{4} \times c =$	
Well Purç	ge Informatic	'n						-				
Purge M	ethod:	Baile	-						Purge Dep	oth:	0.99-	
Field Equ	vipment:	ZP,	YSI		wate	Recent	Lity 1	rete	- Start Time:	-	0730	
Time	Volume Removed (L) Temp (°C) 1 13.5			1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (col	our, oc	dour, turbidity, etc.	
0745	1	13.5	4.6	£8	171.7	428	10.54	1 grown, murky, no odow				
0755	2	15.9	6.6	9	203.9	34.1	8.97		er l			
0803	3	16.2	6.7	14	210.8	36.5	7.93		-			
0808	4	16.3	6.8	1	215.4	41.3	5.99		× -		-	
0815	5	16.3	6.8	6	217.7	37.8	5.82		s	2	-	
											A.	
Purging sha stabilised n % and tem	ould continue fo neasurements a perature is withi	r a minimum re achieved n 0.5 °C ove	n of three I. Stabili r two su	e bore sed m ccess	e volumes o neasuremer ive measure	and stabilise nts for pH a ements.	ed measurer re within 0.1 (nents a oH unit	re achieved or s; EC, redox and	until the d dissolve	bore purges dry and ed oxygen are within 10	
Well Sam	npling Inform	ation				50	-			1.10	1 4 A M	
Time	Removed (L)	Temp (°C)	pł	4	Redox (mV)	εC (μS/cm)	Diss.O2 (ppm)	Cor	mments (col	our, oc	dour, turbidity, etc.	
OSIC	5	16.3	6.8	6	217.7	39.8	5.82	B	inour, M	very	, no ochen	
										(6	
End Time	:				Depth to	Water 1	able:					
Sample	Collection Su	mmary					1.75					
	Primary Sam	ple ID			Intro	a-lab Sar	nple ID		In	ter-lab	Sample ID	

1

Project N	o. N4656					Well ID:		K12	115	
Client:	HCCDC	:				Date:		1-7	-22	
Site:	KIWEF 8	EPAP				Field Tee		DI	t	
Weather:	6	verces	5			Field led	im:			i sen sen s
Water Lev	el Data (me	easured as	metres	from Top	of Casing	[ToC])		19 AF		Sector Sector
a. Depth	to Water To	able (ToC):				NAPLpre	sent?]Yes □No
b. Well St	tickup (ToC 1	o ground le	vel)	/		-	/			
c. Total V	Vell Length:				/	NAPL Inte	erpha	se Depth:		
d. Depth	of Water C	olumn to-a	a):	/			141		u d	2
e. Casing	g Diametor.						vve	eir volume.	$v = n - \frac{1}{4}$	- x c -
Well Purg	e Informatio	on						0		
Purge Me	thod:							Purge De	oth:	
Field Equi	pment:						-	Start Time	2 . CH 1	- 5 - a 1 g
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µS/cm	Diss Oz (ppm)	Con	nments (co	lour, odd	our, turbidity, etc.
	1-7			/		/	/			
			/		/		r .	id at	nen	ALL ALL
				/		1 = 1	Co	- 0	100	11-120
			/				Co	& the	, ue	the weaged
- F - 1 - Hold -					,k 		0-	- +8	2.4.	Jaho and an and a state of the
	/						14	rea p	- 31	s nincter
	/				1					
Purging short stabilised m % and temp	uld continue fo easurements a erature is within	r a minimum re achieved. n 0.5 °C over	of three bo Stabilised two succe	pre volumes measureme sssive measu	and stabilise ints for pH ar rements.	d measuren e within 0.1 p	hents a oH units	re achieved o s; EC, redox an	r until the t d dissolve	oore purges dry and d oxygen are within 10
weii sam	Volume	anon		1	EC					
Time	Removed (L)	(°C)	pН	Redox (mV)	(HS/CHT	(ppm)	Cor	nments (eo	tour, od	our, turbidity, etc.
				/		/				
			/							
				/						
	/		/							
	/		/							
End Time				Depth t	l o Water T	able:				
Sample	Collection Su	mmany	_	Eophili	e naior i					Ŀ.
F	rimary Sam	ple ID		Intr	a-lab San	nple ID		Ir	ter-lab	Sample ID
							-			

Project	No.	N4656	0				Well ID:		K17/4	N		
Client:		HCCD	с				Date:		1-7-2	2		
Site:		KIWEF	& EPAP				N N					
Weathe	er:	one	vcast	_			Field Te	am:	DIT			
Water L	evel [Data (m	neasured	as metre	s from Top	o of Casing	g [ToC])					
a. Dep	th to	Water 1	able (ToC	:):	1.0:	3m	NAPLpr	esent	2	DYes DHO		
b. Well	Sticku	Jp (ToC	to ground	level)	0.5	8~				/		
c. Tota	Well	Length	:		127	3~	NAPL Int	erphc	ise Depth:			
d. Dep	th of \	Nater (Column (c	:-a):	117	0.00			22			
e. Casi	ng Dia	ameter			SUN	00		We	ell Volume: V =	$\pi \frac{d^2}{4} \times c =$		
Well Pur	ge Inf	ormatio	on			_		-				
Purge N	letho	d:	Mic	N					Purge Depth:	10 72		
Field Eq	uipme	ent:	IP	YSI (water 1	Qualt	n Mote	2	Start Time:	12.15		
Time	Vc Ren	lume noved	Temp (°C)	pH	Redox (mV)	EC (µS/cm	Diss.O ₂	Con	nments (colour, c	odour, turbidity, etc.		
0952	1	(L)	16.3	7.59	-72.4	16.9	4.44	C	ion as	Part		
1004	5		17.2	6.37	20.1	110.4	1.72	70	lles class	1		
1017	t	0	17.5	6.31	146	180.0	1.42	1	100,000	no sociour		
1030	١	5	17.4	6.27	0444	3.281 0	Lic					
1045	2	J	17.4	6.28	-47.2	190.4	0.96					
Purging sho stabilised n % and tem Well San	puld co neasure peratur	ntinue fo ments ar e is withir	r a minimum re achieved n 0.5 °C over	of three bo Stabilised two succe	pre volumes measureme ssive measur	and stabilise nts for pH an rements.	d measuren e within 0.1 p	nents ar pH units;	e achieved or until th EC, redox and dissol	e bore purges dry and ved oxygen are within 10		
	Vo	lume	Tomo			EC						
Time	Rem	ioved [L]	(°C)	pН	(mV)	(µS/cm)	Diss.O ₂ (ppm)	Com	iments (colour, o	dour, turbidity, etc.		
045	2	0	17.4	6.25	-47.2	192.4	0.96	Ye	llow, clea	, no edour		
								5.0				
ind Time	:				Depth to	o Water To	able:					
ample (Collec	tion Su	mmary									
F	Primar	y Samp	ole ID		Intro	a-lab Sam	ple ID		Inter-lab	Sample ID		
K12	14	P				-		- 1	-			

Project	No.	N4656					Well ID:		KSI	2/6		
Client:		HCCD	C				Date:		1-7	-22		
Site:		KIWEF	& EPAP									
Weathe	er:	or	reast			_	Field Te	am:	D1+			
Water L	evel [Data (m	easured	as metre	es from Top	of Casing	g [ToC])					
a. Dep	th to '	Water T	able (ToC):		/	NAPL pr	esent	ŝ	□Yes □No		
b. Well	Sticku	Jp (ToC	to ground	level)		/			1011			
c. Tota	l Well	Length	/		/		NAPL Int	erpho	ase Depth:			
d. Dep	th of \	Water C	olumn (c	-a):				= he-ar				
e. Casi	ing Dt	ameter:	/				-	W	ell Volume:	$V = \pi \frac{d^2}{4} \times c =$		
Well Pur	rge Inf	formatio	on									
Purge N	Aetho	d:						/	Purge Dep	oth:		
Field Eq	uipme	ent:					/		Start Time:			
Time	Vc Rer	olume noved (L)	Temp (°C)	pН	Redox (mV)	EC HJS/cm	Diss.O2 (ppm)	Cor	mments (cold	our, odour, turbidity, etc		
						/		S	urfe	water		
				/				-				
			/		/							
			/									
		/		/								
	/		/									
	-											
Purging sho stabilised r % and tem	ould co neasure iperatu	ntinue for ements ar re is withir	a minimum e achieved 1 0.5 °C over	of three b Stabilised two succ	oore volumes d measureme essive measur	and stabilise nts for pH ar rements.	ed measuren e within 0.1 j	nents a oH units	re achieved or u ; EC, redox and	until the bore purges dry and dissolved oxygen are within 1(
Well San	npling	Inform	ation			50		_				
Time	Rem	noved (L)	Temp (°C)	рН	Redox (mV)	μS/cm	Diss.O2 (ppm)	Con	nments (colo	our, odour, turbidity, etc.		
(020	-		14.0	7.31	14.4	46.7	11.23	Paul	bow .	der, no odour		
					-	E E 4 0 *						
nd Time					Depth to	WaterTo	able:					
ample (Collec	tion Su	mmary		- eletting				*			
	Prima	y Samp	ole ID		Intro	a-lab Sam	ple ID		Inte	er-lab Sample ID		
Y	cs	12	G							_		

Client: HCCDC Date: $1 - 7 - 22$ Site: KIWEF & EPAP Field Team: D1+ Weather: Durcest Field Team: D1+ Water Level Data (measured as metres from Top of Casing [ToC]) Data D1+ Depth fo Water Table (ToC): 0.72 NAPL present? D1+ Depth fo Water Table (ToC): 0.72 NAPL present? D1+ Depth of Water Column (c-o): 3.59 NAPL interphase Depth D1+ J. Depth of Water Column (c-o): 3.59 MAPL interphase Depth D1+ J. Depth of Water Column (c-o): 3.59 Purge Depth: L.31 J. Depth of Water Column (c-o): 3.59 Purge Depth: L.31 Start Time: II.35 Mell Volume: $V = \pi \frac{d^2}{4} \times c =$ Well Purge Information Purge Depth: L.31 Diss.O2 Comments (colour, odour, turbidity, etc.) Time: Removed Temp PH Redox EC Diss.O2 Comments (colour, odour, turbidity, etc.) IIIS7 IIIC.4 7.34 IO.7 2.99 4.37 Diss.O2 Diss.O2 Dis.O
Site: KIWEF & EPAP Field Team: D1+ Weather: $OUrCost$ Field Team: D1+ Wather Level Data (measured as metres from Top of Casing [ToC]) a. Depth to Water Table (ToC): 0. 72 NAPL present? IYes INo a. Depth to Water Table (ToC): 0. 72 NAPL present? IYes INo b. Well Stickup (ToC to ground level) 0. 20 NAPL interphase Depth IYes INo c. Total Well Length: 4. 31 m NAPL interphase Depth IYes IYes INo d. Depth of Water Column (c-a): 3. 5 9 m Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Vell Purge Information Purge Information Purge Depth: L. 3) III 35 III 35 Time Removed Temp PH Redax EC Diss.O2 Comments (colour, odour, turbidity, etc.) IV45 I I.6
Weather: Owness t Pield Team: Other Water Level Data (measured as metres from Top of Casing [ToC]) A. Depth to Water Table (ToC): O. 72 NAPL present? Types Types a. Depth to Water Table (ToC): O. 72 NAPL present? Types Types Types b. Well Stickup (ToC to ground level) O. 2.0 NAPL Interphase Depth Image: Start Types Types Types c. Total Well Length: 4.31 m NAPL Interphase Depth Image: Start Types Types<
Water Level Data (measured as metres from Top of Casing [ToC]) a. Depth to Water Table (ToC): 0.72 NAPL present? TYes TYes b. Well Stickup (ToC to ground level) 0.20 NAPL present? TYes TYes c. Total Well Length: 4.31 n NAPL Interphase Depth d. Depth of Water Column (c-a): 3.59 m Well Volume: $V = \pi \frac{d^2}{4} \times c =$ e. Casing Diameter: S0 m Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Nell Purge Information Purge Depth: 4.31 Time Removed Temp PH Redox EC (µS/Cm µ) Diss.02 (norments (colour, odour, turbidity, etc.) 1145 1 16.4 7.52 1049 1151 6.40 Cuar and address 1145 1 16.4 7.52 1049 1151 6.40 Cuar and address 1149 2.5 16.4 7.44 100.9 107.1 2.64 7.07 2.5 1157 5 16.1 7.33 119.2 119.4 4.42 2.7 2.7 1157 5 16.1 7.33 119.4 112.14 4.44 2.7
a. Depth to Water Table (ToC): 0.72 NAPL present? TYes INO b. Well Stickup (ToC to ground level) 0.20 NAPL Interphase Depth INO c. Total Well Length: 4.31 NAPL Interphase Depth INO d. Depth of Water Column (c-a): 3.59 Well Volume: $V = \pi \frac{d^2}{4} \times c =$ e. Casing Diameter: Som Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Som Purge Depth: 4.31 Purge Method: Micrograd Purge Depth: 4.31 Time Removed Temp (°C) pH Redox EC (µS/cm) (µS, 0) Comments (colour, odour, turbidity, etc.) IV45 1 16.4 7.52 1049 1151 5.44 n< n IV49 2.5 16.4 7.44 100.9 7.07 c n n 1157 16.1 7.34 107.7 2.094 7.07 c n n 1215 10 16.1 7.33 119.6 11214 4.44 n n n 1157 16.1 7.36 119.6 11214 4.49 n
b. Well Stickup (ToC to ground level) c. Total Well Length: d. Depth of Water Column (c-a): d. Depth of Water Column (c-a): e. Casing Diameter: Som Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Well Volume: $V = \pi \frac{d^2}{4}$
c. Total Well Length: 4. 31 M NAPL Interphase Depther 4. Depth of Water Column (c-a): 5. Casing Diameter: Som Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Well Volume: $V = \pi \frac{d^2}{4} $
d. Depth of Water Column (c-a): 3.59m Well Volume: $V = \pi \frac{d^2}{4} \times c =$ Well Purge Information Purge Method: Micryck Purge Depth: 4.3) Purge Method: Micryck Purge Depth: 4.3) Time Removed Temp pH Redox [I]SC Comments (colour, odour, turbidity, etc.) 1145 1 16.4 7.52 1049 1186 6.40 4.37 1157 5 16.4 7.34 107.7 2.094 7.67 6.2 1157 5 16.2 7.36 116.5 2079 4.37 7.67 7.67 206 7.5 16.2 7.36 116.5 2079 4.37 7.67 7.67 7.67 1215 10 16.1 7.33 119.6 11214 4.44 7.67 7.67 7.67 10215 10 16.1 7.33 119.6 11214 4.44 7.67 7.67 10315 10 16.1 7.33 119.6 11214 4.424 7.67 7.67 7.67 7.67
e. Casing Diameter: Som Well Volume: $V = \pi \frac{E}{4} \times c =$ Well Purge Information Purge Information Purge Method: Micrographic Purge Depth: 4,3) Time Time Temp (°C) pH Redox (µS/cm) Comments (colour, odour, turbidity, etc.) 1145 1 16.4 7.52 104.9 1150 Comments (colour, odour, turbidity, etc.) 1157 5 16.1 7.34 109.7 2094 7.67 c 206 7.5 16.2 7.36 112.14 4.44 1157 5 16.1 7.33 19.7 2094 7.67 206 7.5 16.2 7.33 119.7 2094 7.67 206 7.5 16.1 7.33 119.4 4.437 1215 10 16.1 7.33 119.4 4.444 1215 10 16.1 7.33 119.4 1.94.44 1215 10 16.1 7.33 119.6 112.14 4.44
Well Purge Information Purge Depth: 4.3 Purge Method: $Microprec$ Purge Depth: 4.3 Field Equipment: IP , YST wate Quark Mode Start Time: $I135$ Time $Volume$ Temp (PC) PH Redox (US/Crm (mV)) Comments (colour, odour, turbidity, etc. $IIHTS$ I $I6.4$ 7.52 $I049$ IKL 6.40 $Cucroprecents$ $IIHTS$ I $I6.4$ 7.52 $I049$ IKL 6.40 $Cucroprecents$ $IIHTS$ I $I6.4$ 7.52 $I049$ IKL 6.40 $Cucroprecents$ $IIHTS$ I $I6.4$ 7.52 $I049$ IKL 6.40 mm mm $IIS7$ S $I6.1$ 7.34 $I07.7$ 20944 7.07 $c.$ mm $IIS7$ S $I6.1$ 7.33 $I19.6$ $I1214$ 4.437 mm $IIS7$ $I0$ $I6.1$ 7.33 $I19.6$ $I1214$ 4.424 mm mm mm mm
Purge Method: Microprese Purge Depth: 4,3) Field Equipment: DP , TST water Quarting Meter Start Time: 1135 Time Removed Temp (°C) pH Redox (mV) EC (µS/cm Diss.O2 (ppm) Comments (colour, odour, turbidity, etc.) 145 1 16.4 7.52 1049 11KL 6.40 Cura a and a 149 2.5 16.4 7.52 1049 11KL 6.40 a and a 1157 5 16.1 7.34 109.7 2.094 7.07 a a 206 7.5 16.2 7.36 116.5 2099 4.37 a a 1215 10 16.1 7.33 119.6 11214 4.44 a a urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and claised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 a b urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and claised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are w
Tield Equipment: P_{i} TS_{i}
TimeVolume RemovedTemp (°C)pHRedox (mV) EC (µS/cmDiss.O2 (ppm)Comments (colour, odour, turbidity, etc. (ppm)1145116.47.52104911866.60Clean (uanter)0.880011492.516.47.52104911866.40Clean (uanter)0.88001157516.17.34109.72.0947.070.50.52067.516.27.36116.520994.370.50.512151016.17.33119.6112144.440.50.5urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and additised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 and temperature is within 0.5 °C over two successive measurements.Vell Sampling InformationTemp (°C)pHRedox (mV) EC (µS/cm (µS/cm (µS/cmDiss.O2 (ppm)Comments (colour, odour, turbidity, etc.118Volume RemovedTemp (°C)pHRedox (µS/cm EC (µS/cm (µS/cmDiss.O2 (ppm)Comments (colour, odour, turbidity, etc.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
206 7.5 16.2 7.36 116.5 2099 4.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.444 9.37 1215 10 16.1 7.33 119.6 11214 4.437 9.37 9.67 1215 10 16.1 7.33 119.6 11214 4.377 9.37 10.67 10.576 10.67 10.5
1215 10 16.1 7.33 119.6 11214 4.44 Ary after 10L urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and labilised measurements are achieved. Stabilised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 s and temperature is within 0.5 °C over two successive measurements. Vell Sampling Information Temp (°C) pH Redox (mV) EC (µS/cm) (ppm) Comments (colour, odour, turbidity, etc.) 215 10 16.1 7.23 119 i 11.214 4.444
urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and labilised measurements are achieved. Stabilised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 is and temperature is within 0.5 °C over two successive measurements. Vell Sampling Information Time Volume (°C) pH Redox (mV) EC (µS/cm) (ppm) Comments (colour, odour, turbidity, etc.) 215 10 16 7 23 119 1 10 11 10
urging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and tabilised measurements are achieved. Stabilised measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 s and temperature is within 0.5 °C over two successive measurements. Vell Sampling Information Time Removed Temp pH Redox EC (µS/cm pm) Comments (colour, odour, turbidity, etc. (L) 10 11 7 22 119 (up of the bare bare bare bare bare bare bare bar
Volume Removed (L)Temp (°C)pHRedox (mV)EC (μ S/cmDiss.O2 (μ ppm)Comments (colour, odour, turbidity, etc.21510167.231191111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
215 10 16 722 191 1121 111
10.1 1.52 111.6 11/14 7.44 Clear, no adom
nd Time: Depth to Water Table:
ample Collection Summary
Primary Sample ID Intra-lab Sample ID Inter-lab Sample ID
K1217

Project N	lo. N4656					Well ID:		KIO	20		
Client:	HCCDC	:				Date:		4-7	-22	-	
Site:	KIWEF &	EPAP				Field Tec		DI	+		
Weather	For	le. S-	nny			neiù rec	an.	2.			
Water Le	vel Data (me	easured a	is metres	from Top	of Casing	[ToC])					/
a. Depti	n to Water To	able (ToC)	1	2.030	~	NAPL pre	sent?		C	IYes 🗆	INO
b. Well S	stickup (ToC t	o ground I	evel)	0,88~						/	~
c. Total	Well Length:			9.97~	6)	NAPL Inte	erpha	ise Depth:	/		
d. Deptł	n of Water C	olumn (c·	-a):	7-94	1				/	1 ²	
e. Casin	g Diameter:			Som	-		VVe	ell volume:	$V = \pi$	$\frac{-}{4} \times c =$	
Well Purg	ge Informatio	'n						1.			
Purge Me	ethod:	Bail	er					Purge Dep	oth:	2.0'	3~
Field Equ	ipment:	IP, "	ISI (safer (Ruait	note		Start Time:	ài A	(018	5
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µ\$/cm }	Diss.O2 (ppm)	Con	nments (col	our, oc	lour, turb	idity, etc
1018	- 1	16.6	7.00	130.2	10.1	11.62	N	s odo-	1		
1021	5	16.9	7.32	. 94.6	334.0	4.72	Y-e1	low, dear	- 010	could a	dour
1025	10	18.1	7.36	91.1	351.9	4.33	Ye	llow, nu	les .) vrsaic	orlan
1029	12.5	18-6	7.41	88.2	358.2	4.39	81	our nu	ky, c	rank	odon
1035	15	18.7	7.43	86.9	362.8	4.48			- /-	· ·	-
				-							
Purging sho stabilised m % and temp	ould continue for neasurements ar perature is within	r a minimum re achieved n 0.5 °C over	of three b Stabilised two succe	ore volumes i measureme essive measur	 and stabilise nts for pH ar rements.	d measuren e within 0.1 p	 nents a oH units	re achieved or s; EC, redox an	until the d dissolve	bore purge ed oxygen o	s dry and are within 1
Wen Juli	Volume	Tanan		Destau	EC	Divo					
Time	Removed (L)	(°C)	pН	(mV)	(µS/cm)	(ppm)	Con	nments (col	our, oc	lour, turb	idity, etc
1035	15	18.7	7.43	86.9	362.8	4.48	B.	in mul	cy, or	gan. L o	dow
	100 100			_					12		
End Time	:			Depth to	o Water T	able:					
9 2 S	Collection Su	mmary									
Sample (encenen ou										

Project I	No.	N4656				i i		Well ID:		KIO	22				
Client:		HCCDC						Date:		4-7-	22				
Site:		KIWEF &	EPAP					Field To		DIL					
Weathe	r:	Kett	2/22	Fie	۹.	Sunny		Field Ter	um.	0(4					
Water Le	evel D)ata (m	easured o	as met	res	from Top	of Casing	[ToC])							
a. Dept	h to \	Water To	able (ToC):	(5.26~	-	NAPL pre	esent?		Ċ	IYes DNo			
b. Well	Sticku	up (ToC	to ground	level)	C	.87~	6					/			
c. Total	Well	Length:			1	10.09	~	NAPL Int	erpha	se Depth:	/				
d. Dept	h of \	Nater C	Column (c	-a):		3.83~	-			/		72			
e. Casir	ng Dia	ameter:	5			Som			We	Well Volume: $V = \pi \frac{a^2}{4} \times c =$					
Well Pur	ge Inf	formatio	on												
Purge M	etho	d:	Bail	ēr						Purge De	oth:	6-26-			
Field Equ	Jipme	ent:	JP 4	SI	C)	ate a	eralite	1 Meite	-	Start Time	:	1045			
Time	Vc Rer	olume noved (L)	Temp (°C)	pH	H	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Diss.O2 (ppm) Comments (colour, odour, turbidity, e						
1053	1		19.5	9.7	9	-288.6	17.9	7.45 04		-		-low			
1100	2	-	19.6	8.6	4	-218.3	18.4	4.65		. 0-5	-	-			
1105		3	19.6	8.2	1	-212.9	21.8	5.12			÷ .	-			
						1									
									0	010-	21				
11									5~) of to	5				
									1 1 1						
Purging sho stabilised r % and tem	ould co neasur peratu	ontinue fo ements ar ire is withir	r a minimum re achieved n 0.5 °C ove	n of three 1. Stabilis r two suc	e boi sed r cces	re volumes o neasuremer sive measur	and stabilise nts for pH ar ements.	ed measuren re within 0.1 j	 nents ar oH units;	e achieved or ; EC, redox an	until the d dissolve	bore purges dry and d oxygen are within 10			
weii sun	Vo	lume					EC	21.0							
Time	Ren	noved (L)	(°C)	pH	1	(mV)	(µ\$/cm)	Diss.O ₂ (ppm)	Corr	nments (col	lour, od	our, turbidity, etc.			
IOT	5		19.6	821		-212.9	21.8	5.12	CL	er, org	en.c	odow			
						2									
		_													
End Time):					Depth to	Water To	able:							
Sample	Colle	ction Su	mmary												
10	Prime	ary Sam	ple ID			Intro	a-lab Sam	nple ID		In	ter-lab	Sample ID			
Kiol2M -											-				

Project N	No. N	4656						Well ID:		KIO	21	se
Client:	н	CCDC	5 2 2					Date:		4	7-21	2
Site:	к	IWEF &	EPAP				J	Field Ter		P		
Weather	:	Fire	, Sun)			rieid ied	im:	D.	(+-	
Water Le	evel Da	ıta (me	asured a	s met	res f	rom Top o	of Casing	[ToC])				
a. Dept	h to W	ater Ta	ible (ToC)	:	1	0.18~		NAPL pre	sent	2	1	□Yes ⊒No
b. Wells	Stickup	o (ToC to	o ground l	evel)	١	.03~	~					
c. Total	Well Le	ength:			1	4.16		NAPL Inte	ərphc	ise Depth:	/	
d. Dept	h of W	ater Co	olumn (c-	-a):		3.98~				/		<i>d</i> ²
e. Casir	ng Diar	neter:				Summ			W	ell Volupte:	$V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Info	rmatio	n	-								
Purge M	ethod:		Micon	2 mg	e	Bailer	-			Purge Dep	oth:	14.16m
Field Equ	Jipmer	nt:	IP, Y	SI	wo	ter Q	walt	ty Mete Start Time:			8	r 1115
Time	Volu Rem	ume oved L)	Temp (°C)	pł	-1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (col	our, oc	dour, turbidity, etc.
1136	l		19.5	6.3	9	-159.9	58.6	10.05	Cio	on once	nit	adour
1140	2.	5	20.6	6.8	33	-247.6	10387	3.28	1		~	
1144	5		20.6	6.8	85 -267.5 1991			2.84	Ba	un clee-	ore	ail adour
1148	7.	5	26.7	68	5	-271.4	20122	2.85	0		0	
1155	10	5	20.7	6.8	7	-272.3	20649	2.98		· ~ ~	-	~
			Drm	of	ter	loi	-		Run	p not a	ww-k	ing es pris
			5	2					شي	toled 1	4 5.	aile
Purging sha stabilised n % and tem	ould con neasurer iperature	tinue for ments are a is within	a minimum e achieved. 0.5 °C over	of thre Stabili two su	e boi ised r icces	re volumes c neasuremer sive measure	and stabilise its for pH are ements.	d measuren e within 0.1 p	nents c oH unit	re achieved or s; EC, redox and	until the d dissolv	bore purges dry and ed oxygen are within 10
Well San	npling	Inform	ation	1	_		50					
Time	Rem (I	oved L)	Temp (°C)	pł	-	Redox (mV)	EC (μS/cm)	Diss.O2 (ppm)	Cor	mments (col	our, oc	dour, turbidity, etc.
1155	(c	>	20.7	6,8	7	-272.3	20649	2.88	Brow	wh, clea	1 01	Schie odser
End Time	e:				-	Depth to	Water To	able:				
Sample	Collect	tion Su	mmary									
	Primar	y Samp	ole ID			Intro	a-lab Sam	nple ID		In	ter-lab	Sample ID
)	KIO	20	ろ									

Project N	lo. N4656						Well ID:		BH 2	S	
Client:	HCCDC					_	Date:		27-6	-22	
Site:	KIWEF 8	EPAP					Field Tec	im.	EQ.	DLI	
Weather	: Fire	, Sur	~7				Tield Tee			- FI	
Water Le	vel Data (me	easured a	s metre	es from T	op of	Casing	[ToC])			1220	
a. Dept	h to Water To	able (ToC)	:	5.2	0~	~	NAPL pre	sent?			Yes Ho
b. Wells	Stickup (ToC t	o ground l	evel)	0.3	5~						_
c. Total	Well Length:			6.4	8~		NAPL Inte	erpha	se Depth:	/	
d. Depti	h of Water C	olumn (c-	·a):	1.2	8~			10/0	Watumo:	$V = \pi^{d^2}$	
e. Casin	g Diameter:			50	~~	- F		VV E	en volume.	$v = n - \frac{1}{4}$	- × t -
Nell Purg	ge Informatio	n									
ourge M	ethod:	Barl.	e						Purge Dep	oth:	5.20-
Field Equ	vipment:	IP, Y	SI	Water	Q	Lu al	ty M	ete	Start Time		0930
Time	Volume Removed (L)	Temp (°C)	pН	Rea (m)	ox ()	EC /µ\$/cm }	Diss.O2 (ppm)	Con	nments (col	our, odd	our, turbidity, etc.
0930	X	20:5	10.7	8_243	3 1	311	7.75	Co	en pro a	art i	where he and
0931	2.5	20.8	10.84	1 -29	1.51	604	2.44	-	r e Se		• • •
0433	5	21.0	10.60	-299	910	squ .	2.06		-		
0435	7.5	21.0	10.9	2 -30	(1) 1	656 1	.43	An	why or	conic	alow
0938	10	21.0	10.9	13 - 30	2.11	663	1.64		~	0.1	~
											4
Purging sha tabilised m % and tem	ould continue fo neasurements ar perature is withir	r a minimum re achieved n 0.5 °C over	of three Stabilist two suc	e bore volur ed measur cessive me	nes an ements asuren	d stabilise for pH are nents.	d measuren e within 0.1 p	hents a oH units	re achieved or ;; EC, redox an	until the b d dissolve	oore purges dry and d oxygen are within 10
Well San	npling Inform	ation									
Time	Volume Removed (L)	Temp (°C)	pН	Rec (m`	lox √)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (co	lour, od	our, turbidity, etc.
0938	(0)	21.0	10.9	3 302	a)	663	1.64	B.	own je	ngan	i odou
						-					
1				-					1 - 6		
			_			1.1		-			
								(
End Time	e:			Dep	th to V	Water To	able:				
Sample	Collection Su	ummary									
	Primary Sam	ple ID			Intra-	lab San	nple ID		In	ter-lab :	Sample ID
1	51+ 21 9	5				-				-	

Project N	No. N4	656						Well ID:		344A	
Client:	HC	CDC						Date:		27-6-	22
Site:	KIV	VEF &	EPAP					Field Tee		EA D	14
Weather	: 6	Fing	e, su	m	1			rield led			
Water Le	evel Data	a (me	easured a	is met	res	from Top o	of Casing	[ToC])			
a. Dept	h to Wa	ter Tc	ble (ToC)	:	5	.62m		NAPL pre	sent?		□Yes □No
b. Wells	Stickup (ToC t	o ground I	evel)	0	.75~	1				The state of the s
c. Total	Well Ler	ngth:			8	.48-		NAPL Inte	erpha	e Depth:	
d. Dept	h of Wa	ter C	olumn (c·	-a):	2	.86~	-		141	0.07-0.25-5-	d^2
e. Casir	ng Diam	eter:			2	50 mm	-		We	II volume: V =	$=\pi - \times c =$
Well Purg	ge Inform	natio	n								
Purge M	ethod:		Mor	ope	v					Purge Depth:	8.48~
Field Equ	uipment:		YSI	wa	Je	and	inty M	nter, I	e	Start Time:	1000
Time	Volur Remov (L)	ne ved	Temp (°C)	pl	4	Redox (mV)	ÈC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (colour,	odour, turbidity, etc.
1006	I		18.8	11.0	36	-272.4	17.6	7.27	CLA	0, no 00	low
1011	2.5	5	20.4	11.2	20 -279.3		10.4	1.26			~
1019	5		20.6	11.	22	-299,1	9.6	1.12	¢		
1026	7.5	5	20.5	11.2	22	-302.2	9.9	1.05	د		-
1032	10		20.5	11.	21	- 302.8	10-0	0.91			
									2 F -		
Purging sho stabilised n % and tem	ould contir neasureme perature is	nue for ents are s within	a minimum e achieved 1 0.5 °C over	of thre Stabil	e bo ised i icces	re volumes o measuremer ssive measure	and stabilise nts for pH an ements.	d measuren e within 0.1 p	hents ar oH units	e achieved or unfil : EC, redox and diss	the bore purges dry and solved oxygen are within 10
Wen sun	Volur	ne	Tana	1		Destau	EC	Divo	1		
Time	Remov (L)	ved	(°C)	pl	Н	(mV)	(µS/cm)	(ppm)	Corr	nments (colour,	odour, turbidity, etc.
1032	10		20.5	11.2	21	-302.8	10.0	0.91	CL	eer no o	don
		, .									
End Time	e:					Depth to	Water Te	able:			
Sample	Collectio	on Su	mmary								
~	Primary	Samp	ole ID			Intro	a-lab Sam	ple ID		Inter-I	ab Sample ID
2	244F)					-			2	-

Project N	No. N4656	5	-				Well ID:		344B			
Client:	HCCE	C					Date:		27-6-21	L		
Site:	KIWEF	& EPAP					Field Tec		1=0. 01.	£		
Weather	: 62	-e, s-~	~~				rield led	in.				
Water Le	evel Data (r	neasured a	is met	res	from Top	of Casing	[ToC])					
a. Dept	h to Water	Table (ToC)	t	8.	25~		NAPL pre	sent?	<u> </u>	TYes THO		
b. Wells	Stickup (Too	to ground l	evel)	0	.77~	•				/		
c. Total	Well Lengt	n:		1	2-26,	~	NAPL Inte	erpha	se Depth:			
d. Dept	h of Water	Column (c-	-a):	1	4.01,	~		14/-	Il Valence V	d^2		
e. Casir	ng Diamete	r:			50-	r		VV E	ell volume: $V = \pi$	$\frac{1}{4} \times c =$		
Well Purg	ge Informat	ion										
Purge M	ethod:	Mi	crop	w	se				Purge Depth:	12.26		
Field Equ	uipment:	IP,	453	1	water	Quali	ty me.	le	Start Time:	1050		
Time	Volume Removec (L)	Temp (°C)	pł	H	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Diss.O2 (ppm) Comments (d		dour, turbidity, etc.		
1055	1	16.7	7	71	-163.5	54.5	5.51	Gr.	nurker	e oder		
1101	2.5	19.3	6.5	2	- 56.2	39.6	2.94	Da	le son mole	and a subject		
1113	5	19.5	6.4	7	- 52.8	352	0.69	1.				
1126	7.5	19.6	6.4	to	-83.0	33.9	0.72	٤.				
1135	10	19.5	6.4	9	-77.3	36-8	0.82	× .		~		
				_								
Purging sho stabilised n % and tem	ould continue neasurements perature is wit	for a minimum are achieved hin 0.5 °C over mation	of thre Stabil two su	e bo sed r cces	re valumes a measuremen ssive measur	and stabilise nts for pH an ements.	d measuren e within 0.1 p	nents a oH units	re achieved or until the ;; EC, redox and dissolv	e bore purges dry and red oxygen are within 10		
	Volume	. Temp			Redox	EC	Diss.O2					
lime	Removed (L)	(°C)	p	-1	(mV)	(µS/cm	(ppm)	Con	nments (colour, o	dour, turbidity, etc.		
1135	10	19.5	6.4	9	-77.3	36.8	0.82	De	- t gray, mut	y, a odon		
			} 									
End Time) e:			_	Depth to) Water T	able:					
Sample	Collection	Summary										
	Primary Sa	mple ID			Intro	a-lab San	nple ID		Inter-lab	Sample ID		
3	544B					-			-			

Project N	No. N	4656						Well ID:		NGIAL	
Client:	Н	ICCDC	8					Date:		29/06/22	
Site:	к	IWEF &	EPAP					Field Tec		· · ·	
Weather	:	Overo	is f					riela iec	4111.	FA	
Water Le	evel Do	ita (me	easured a	s met	res	from Top	of Casing	[ToC])	60	S. Sand	
a. Dept	h to W	ater To	able (ToC)			1.Sm	u -	NAPL pre	esent?		□Yes ੴNo
b. Wells	Stickup) (ToC t	o ground le	evel)	(0.73					
c. Total	Well L	ength:				13m		NAPL Inte	ərpha	se Depth:	
d. Dept	h of W	ater C	olumn (c-	a):					120		d ²
e. Casir	ng Diar	neter:				SOMA			VV e	ell Volume: $V = \pi$	$r = \frac{1}{4} \times c =$
Well Purg	ge Info	rmatio	n								
Purge M	ethod:		Mic	wow	Ge.			3		Purge Depth:	BM-
Field Equ	vipmer	nt:	Int	enci	e f	rolp	467 WG	M.		Start Time:	13:20
Time	Voli Rem (I	ume oved L)	Temp (°C)	pl	Н	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (colour, o	dour, turbidity, etc.
13:20	2.51	L	18.7	7.0	5	-121.7	34.9.	2.36	Cle	eon, organic c	dav
13:30	5L		19.1	20	ķ	-136.7	611	1.69.	n h	"	',
13:36	7.5	L	19-1	7.0	4	118.9	482.3	2:26	1	, 1	21
13:45	lor		19.1	7.0	4	-118.2	472-2	2.36	lr	H	4
13:53	15L		19.1	70	4	- 11816	477-3	2.24	1	<i>(</i> 1	1,
Purging sho stabilised n % and tem	ould con neasurer perature	itinue for ments ar is withir	a minimum e achieved. 1 0.5 °C over	of thre Stabil two su	e bo ised r icces	re volumes i measureme ssive measur	and stabilise nts for pH ar rements.	d measuren e within 0.1 p	nents a oH units	re achieved or until the s; EC, redox and dissolv	e bore purges dry and ved oxygen are within 10
Well San	npling	Inform	ation								
Time	Rem (I	ume oved L)	Temp (°C)	pl	Ч	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (colour, o	dour, turbidity, etc.
13:53	152		19.)	70	4	-118-6	477-3	2.24	C	lear, organic	aclaw.
End Time	e:					Depth to	o Water Te	able:			
Sample	Collec	tion Su	mmary			late	a lab Sam			Joshan Jack	Sample ID
	randi	y sum				li li fi	<u>a-iab san</u>			inter-lat	

Project N	No. N46	56						Well ID:		NGIGI	
Client:	HCO	CDC						Date:		29/06/22	_
Site:	ĸıw	EF &	EPAP					Field Tor			
Weather	: 0	pra	207					rield led	arn.	ŦA	
Water Le	evel Data	(me	asured a	s met	res	from Top o	of Casing	[ToC])			
a. Dept	h to Wate	er Ta	ble (ToC)	:	50	(- 39		NAPL pre	esent?		□Yes □No
b. Well	Stickup (T	oC to	ground l	evel)	0	.73h.					
c. Total	Well Len	gth:			6	-75h		NAPL Inte	erpha	se Depth:	
d. Dept	h of Wate	er Co	olumn (c-	-a):					1773	11 A & 4	d ²
e. Casir	ng Diame	ter:				ma			VV e	ell Volume: $V = \pi$	$c - \frac{1}{4} \times c =$
Well Purg	ge Inform	atior	n								
Purge M	ethod:		1	Nicw	Þω	G.e.				Purge Depth:	675
Field Equ	uipment:		ì	nter	150	e Pube	YEI U	IDM.		Start Time:	12:4300.
Time	Volum Remov (L)	ie ed	Temp (°C)	pl	+	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Con	nments (colour, o	dour, turbidity, etc.
12:43	5L		18.5	8.6	5	-231.5	38.5	8.25	ligit	& Brain,	
12:52	7.5L		18.9	8.9	4	-2302	147	1.89	light Been		
13:0)	IOL		18.9	8.9	4	- 227.7	15.3	1.85	clean's.		
13.'D5	126		18.9	8.0	94	-227.8	14.4	1.81	CI	lear,	
Purging sho stabilised r % and tem Well San	ould continu neasuremen perature is npling Inf	ue for nts are within	a minimum achieved. 0.5 °C over a tion	of thre Stabil two su	e bo ised i	re volumes c measuremer sive measure	and stabilise hts for pH are ements.	d measuren e within 0.1 p	nents a oH units	re achieved or unfil th s; EC, redox and dissolv	e bore purges dry and ved oxygen are within 10
Time	Volum Remov (L)	ie ed	Temp (°C)	pl	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (colour, o	dour, turbidity, etc.
13:05	ILL		18.9	8.9	4	-227.8	14.4	1.81	CI	lear, ugani	odom.
				1							
End Time	9:					Depth to	Water To	able:			
Sample	Collectio	n Sur	mmary								
	Primary S	Samp	ole ID			Intro	a-lab Sam	nple ID		Inter-lak	o Sample ID

Project	No.	N4656	4656				Well ID:		KI2/7E		
Client:		HCCDC						Date:		29/06/22	
Site:		KIWEF &	EPAP					Field Tor			
Weathe	r:	Werca	st					neiù let	arri.	FA	
Water Le	evel [)ata (me	easured a	is met	res	from Top	of Casing	[ToC])			
a. Dept	th to	Water Tc	able (ToC)	:		-29m		NAPL pre	esent	2	□Yes □No
b. Well	Sticku	UP (ToC to	o ground l	evel)	(035m					
c. Total	Well	Length:			1.1	1.Im	_	NAPL Inte	erphc	ise Depth:	
d. Dept	h of '	Water Co	olumn (c·	-a):							<i>d</i> ²
e. Casir	ng Di	ameter:			3	DIL			W	ell Volume: $V = \pi$	$r\frac{a}{4} \times c =$
Well Pur	ge In	formatio	n								
Purge M	letho	d:	h	Airin	bu	DP.				Purge Depth:	-
Field Equ	Jipme	ent:	In	the	10	Duebe	YAT	NOM.		Start Time:	11:0000
Time	ime Volume Removed Temp (°C) War SL 18, J			pł	-1	Redox (mV)	EC (µ\$/cm	Diss.O ₂ (ppm)	Cor	mments (colour, o	dour, turbidity, etc.
11:Svan	5	SL 18.0 7.				-78.3	1635	489	ho	It Brain, c	Napure
12:05	7	5	18-1	20	8	-85.7	647	2.24	0	11 10	01,
12:12.	10	DL	18.2	70	8	-805	402.5	1-70		<u>}</u> ,	17
Purging sh stabilised r % and tem	ould ci neasui iperatu	ontinue for ements are ure is within	a minimum e achieved. 1 0.5 °C over	of thre Stabili two su	e bo sed r cces	re volumes o measuremer sive measure	and stabilise nts for pH ar ements.	d measuren e within 0,1 p	nents a oH unit	re achieved or until th s; EC, redox and dissol	e bore purges dry and ved oxygen are within 11
well san	V	olume	ation		_		FC		1		
Time	Rer	noved (L)	lemp (°C)	pł	H	Redox (mV)	(µ\$/cm)	Diss.O2 (ppm)	Cor	mments (colour, o	dour, turbidity, etc
12:15	1	oL	18.2	20	8	-825	402.5	1.70	h	gle bren, i	regune
End Time	э:				5	Depth to	Water To	able:		وربيل ألينه	
Sample	Colle	ction Su	mmary								
	Prime	ary Samp	ole ID			Intro	a-lab San	nple ID		Inter-lak	o Sample ID

Project N	No. N4	656						Well ID:		KIO KI	LINOF
Client:	нс	CDC						Date:		29/06/	22
Site:	KI	NEF &	EPAP					Field Tex			<i>p</i> _ <i>v</i>
Weather	:	aven	cash, cli	Juli	1			Field led	am:	PA -	
Water Le	evel Date	a (me	easured a	is met	res f	rom Top (of Casing	[ToC])			
a. Dept	h to Wa	ter To	able (ToC)		1.	17m		NAPL pre	esent	2	□Yes ⊡No
b. Wells	Stickup	(ToC t	o ground l	evel)	0	.47					
c. Total	Well Ler	ngth:			4	42m		NAPL Inte	erphc	ase Depth:	
d. Dept	h of Wa	ter C	olumn (c·	-a):				2		and a second concernant. The	. d ²
e. Casir	ng Diam	eter:			3	Omm			VV	ell Volume: V	$c = \pi \frac{1}{4} \times c =$
Well Purg	ge Inforr	natio	n							11.5	
Purge M	ethod:			Mir	WD	urar i	ow Mon	y pur	nella	Purge Dept	h:
Field Equ	uipment	:		Int	ese	ie Prol	ie. YSI	WOM	P (Start Time:	10:100m
Time	Volur Remo (L)	ne ved	Temp (°C)	pH	1	Redox (mV)	EC (µS/cm)	Diss.O ₂ (ppm)	Cor	mments (colo	ur, odour, turbidity, etc.
10:10an	. 51		16.3	6.94	4	-264.3	44230	2.26	tio	It ghay.	His odow
10:18	2.51	4	16.6	69	4	-267-5	46716	1.49	0	" Seda	ment, H2S oclar.
10:25	8.5	L	16-7	6-9	5	-272-0	47123	0-90	Du	g after)	52 - Vary sectimety
Purging sha stabilised n % and tem	ould contir neasurem perature i:	nue for ents ar s withir	l a minimum e achieved n 0.5 °C over	of three Stabilis two suc	e bor sed n ccess	e volumes a neasuremen sive measure	l and stabilise hts for pH are ements.	l d measuren e within 0.1 (nents c oH unit	rre achieved or ur s; EC, redox and o	ntil the bore purges dry and dissolved oxygen are within 10
Time	Volur Remo	ne ved	Temp (°C)	рŀ	1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (colo	ur, odour, turbidity, etc.
10:25	9.51	1	16.7	6.9.	5	-277-0	47/23	090	De	Ne geory;	sechinerts
End Time);					Depth to	Water To	able:			
Sample	Collectio	on Su	mmary			Locato es	1.1.0				
	Primary	sam	DIE ID			Intro	a-lab Sam	iple ID		Inte	r-lab Sample ID
											-

Doc: BMS-CL-F002 Rev: 2 Mar_16

 \sim

Project N	o. N46	56								141011	r K	12/10	
Client:	HCC	CDC	Į.					Date:		29/06/	22		
Site:	KIW	EF &	EPAP					Field Tee					
Weather	C	louc	4 (5)	d				riela ieu	int.	FA-			
Water Le	vel Data	(me	asured a	s met	res f	from Top o	of Casing	[ToC])					
a. Depti	n to Wate	er Ta	ble (ToC):		6	095		NAPL pre	sent?			□Yes □No	
b. Well S	tickup (T	oC to	o ground le	evel)	C	D.7m							
c. Total	Well Leng	gth:				19-35		NAPL Inte	erpha	se Depth:			
d. Depti	n of Wate	ər Co	olumn (c-	a):					567			<i>d</i> ²	
e. Casin	g Diame	ter:			5	Umm			VV e	ell volume:	$V = \pi$	$\frac{1}{4} \times c =$	
Well Purg	e Inform	atio	n										
Purge Me	ethod:		La	iu F	luu	1 PURP				Purge De	oth:		
Field Equ	ipment:		h	rks	G(E	Public	+ 451	WWM.		Start Time	:	09:20.	
Time	Volum Remove (L)	ie ed	Temp (°C)	pł	1	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Con	nments (co	lour, oc	dour, turbidity, etc.	
07:20m	5L .		16	6.73		-76.7	44068	2.23	lig	t Brown). Cruips	inc abour	
9:30an	10L	IUL 166 6.				-104:2	46649	1.84		11	0	1,	
09:40	152		17.7.	6.81	6	-107-5	44154	1.89					
9:50	JUL		17.8	6.8	6	-108.7	44344	1.81	Cía	an-ich	age	ni	
9:58	25-L		18:0	6.5	7	-1067	43522	1.82		10	J	11	
10:05	302		17.9	6.8	17	-106.8	435 17	\$1.86	86 1. 1,				
Purging sha stabilised m % and temp Well Sam	uld continu leasuremen perature is v pling Inf	ue for nts are within orma	a minimum achieved. 0.5 °C over ation	of thre Stabili two su	e bo sed r cces	re volumes o neasuremer sive measure	and stabilise hts for pH are ements.	d measuren e within 0.1 p	hents a oH units	re achieved o s; EC, redox an	r until the d dissolv	bore purges dry and ed oxygen are within 10	
Time	Volum Removi (L)	ie ed	Temp (°C)	pł	1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oc	dour, turbidity, etc.	
10:05	30L		17-9	6.5	17	-106.8	43579	1.86	C	en un	940		
i.										,)			
End Time	:					Depth to) Water To	able:					
Sample (Collectio	n Su	mmary			consider and all	e oc mestato in Frite Ma						
	Primary S	amp	ble ID			Intro	a-lab Sam	ple ID		Ir	iter-lab	Sample ID	

Project N	o. N4656					Well ID:		BHe2	35
Client:	HCCD	с				Date:		6-7-2	2
Site:	KIWEF	& EPAP				Field Tee		PA 01	7
Weather:	ave	rest				rield led	am.		
Water Lev	vel Data (m	easured as	metre	s from Top	of Casing	[ToC])		Ar	
a. Depth	n to Water 1	able (ToC):		-		NAPL pre	sent	Ś	DYes DNo
b. Well S	tickup (ToC	to ground le	vel)	0.72~					
c. Total \	Well Length	0		2.30~		NAPL Inte	erpho	ase Depth:	
d. Depth	n of Water (Column (c-c	ı):	-					
e. Casing	g Diameter			50 40,	~~		W	elivolume: 1	$7 = \pi \frac{\pi}{4} \times c =$
Well Purg	e Informati	on							
Purge Me	ethod:						/	Purge Dept	h:
Field Equi	ipment:					/		Start Time:	
Time	Volume Removed (L)	Temp (°C)	рН	Redox (m∨)	EC (µS)Cm	Diss.O2 (ppm)	Cor	mments (colo	ur, odour, turbidity, et
				/					
					/				
			/		.0	n-s			
			/		Jet				
			/						
			/						
Purging shou stabilised me % and temp Well Sam	uld continue fo easurements c perature is with pling Inforn	or a minimum o are achieved. S in 0.5 °C over th nation	f three b Stabilised wo succi	oore volumes d measuremen essive measur	 and stabilise nts for pH ar ements.	d measurem e within 0,1 p	hents c oH unit	are achieved or u is; EC, redox and	intil the bore purges dry and dissolved oxygen are within
	Volume	Temp		Redox	EC	Diss	-		
lime	Removed (L)	(°C)	pН	(mV)	fas/cm	(ppm)	Cor	mments (colo	ur, odour, turbidity, et
	÷.				/				
			/	/	pm	1			
			/	we	V				
		/	1						
		/	V						
End Time:				Depth to	o Water T	able:			
Sample C	ollection S	ummary		- Constant of the Audit					
P	rimary Sam	iple ID		Intro	a-lab San	nple ID		Inte	er-lab Sample ID

Project	No. N4656						Well ID:	1	BILE	23	D
Client:	HCCDO	2					Date:		6-7	-22	
Site:	KIWEF	& EPAP					Field Tee		FG	1. 01	1
Weather	: are	rccst	Ra	1	ñ		rield lec	im:		12.	
Water Le	evel Data (m	easured a	is meti	est	from Top (of Casing	[ToC])				
a. Dept	h to Water T	able (ToC)	:	3	5.89 m	~	NAPL pre	senta		C	IYes INO
b. Wells	Stickup (ToC	to ground I	evel)	C).431	~					/
c. Total	Well Length	:		10	0.53	~	NAPL Inte	erpha	se Depth:	/	
d. Dept	h of Water C	Column (c-	-a):	6	Gur	~					12
e. Casir	ng Diameter:			5	50 m			VV e	ell volume:	$V = \pi -$	$\frac{1}{4} \times c =$
Well Purg	ge Informatio	on 🛛									
Purge M	ethod:	Bailt							Purge Dep	oth:	3.89
Field Equ	uipment:	IP,	YSI	2	vater	Quali	ty re	te	Start Time	:	0900
Time	Volume Removed (L)	Temp (°C)	ph	I	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Con	nments (col	lour, od	lour, turbidity, etc.
0905	1	20.7	24	(29.6	4562	Ell	ci	er or	0.0.0.10	adam
2910	5	7.4	6	-231-6	6261	2.29		·	5-1-	_	
0915	10	21-0	7-3	2	-258.0	8440	2-00		-	• •	-
0920	15	21.1	7.2	2	-261.7	8434	2.21		× 2	-	
0925	20	ZLQ	7.26	0	-2622	8604	2.27		N==-	+	~ -
Purging sho stabilised n % and tem	ould continue fo neasurements a perature is withi	r a minimum re achieved. n 0.5 °C over	of three Stabilis two suc	e bor ed r cces	l re volumes c neasuremer sive measure	I and stabilise hts for pH are ements.	l d measuren e within 0.1 p	l nents a pH units	re achieved or s; EC, redox an	until the d dissolve	bore purges dry and ed oxygen are within 10
Well San	npling Inform	nation									
Time	Removed (L)	Temp (°C)	рH		Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (co	lour, oc	lour, turbidity, etc.
0925	20	21-0	7.2	6	-262.2	story	2.27	CL	eor, or	Son	L oclam
				_							
										a ana ana ana ana ana	
			-								
End Time	e:	-l			Depth to	Water Tr	nble:				
Sample (Collection Su	mmary								2	
	Primary Sam	ple ID			Intro	a-lab Sarr	ple ID		In	ter-lab	Sample ID
(SHe 23	D			-				-		

Project N	lo. N4656			Well					BILE	39	D
Client:	HCCDC						Date:		6-7	-22	2
Site:	KIWEF 8	EPAP					Field Tee		EA	DL	4
Weather	: Our	icct /1	2ai	_			rield led	im:	FIA .		
Water Le	vel Data (me	easured a	s met	res f	rom Top o	of Casing	[ToC])				
a. Depti	h to Water To	able (ToC)	:	2	.45 m		NAPL pre	sent?		E	IYes INO
b. Wells	Stickup (ToC t	o ground l	evel)	0	.42	~					
c. Total	Well Length:		-	8	. 50 r	~	NAPL Inte	erphas	e Depth:	/	
d. Dept	h of Water C	olumn (c-	-a):	B	05~	~					d^2
e. Casin	ng Diameter:			5	0			We	Volume:	$V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Informatio	n									
Purge M	ethod:	Bail	er						Purge Dep	th:	2.45
Field Equ	vipment:	I8.7	SI	S	oter Q	ladit	y net	e	Start Time:		0955
Time	Volume Removed (L)	Temp (°C)	pł	Н	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	iments (colo	our, oc	lour, turbidity, etc.
(000	C	18.5	7.0	11	-71.9	1136	(0.01	CLE	er, one	ani	e oclou
1005	5	5 17.5 2.0			-35-7	1077	5.97		1	-	
1010	(0)	0 17-5 7-1			-(81.7	1301	4-59		•	*	
2102	15	18.2	7.	24	-245.3	3119	2-62		1-	~ -	
1020	20	18.2	7.0	30	-247.7	3215	2.73				
				1							
1											
Purging sha stabilised n % and tem	ould continue fo neasurements ar perature is withi	r a minimum e achieved n 0.5 °C ovei	of thre Stabil two su	e boi ised r icces	re volumes c measuremer sive measure	i and stabilise hts for pH ar ements.	1 d measuren e within 0.1 j	nents ar oH units	e achieved or ; EC, redox and	until the d dissolve	bore purges dry and ed oxygen are within 10
Well San	npling Inform	ation	1					1			
Time	Volume Removed (L)	Temp (°C)	pl	Н	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Con	nments (col	our, oc	dour, turbidity, etc.
1020	20	18-2	7_0	80	-247.7	13215	2.73	C	led or	opni	e adam
									· ·	9	
					at the second						
End Time	9;				Depth to	water T	able:				
Sample	Collection Su	mmary									
	Primary Sam	ple ID			Intro	a-lab San	nple ID		In	ter-lab	Sample ID
E	34e39	0				-					

Project N	No. N	4656						Well ID:		RILE	29	L
Client:	н	CCDC						Date:		6-5	2-2	2
Site:	KI	WEF &	EPAP				27 - 48 - 4			100		
Weather	r: 0	ver	Cast	1R	ai	~		Field Teo	ım:		, D1.	+
Water Le	evel Dai	la (me	easured a	s met	res	from Top	of Casing	[ToC])				
a. Dept	h to Wo	ater To	able (ToC)	:	2	-87	~	NAPL pre	sent?		Ľ	IYes ENo
b. Wells	Stickup	(ToC t	o ground l	evel)	C	2.70	~		ur de la c	2 B 8 8		
c. Total	Well Le	ngth;			4	1-42	~	NAPL Inte	erphas	se Depth:	/	
d. Dept	h of Wo	ater C	olumn (c-	-a):	(- 55	~		3427			12
e. Casir	ng Diam	neter:			4	50 ~ r	-		We	olume:	$V = \pi -$	
Well Purg	ge Infor	matio	n									
Purge M	ethod:		Barte	5						Purge Dep	oth:	2.87~
Field Equ	Jipmen	t:	IP,	(SI	- 1	water	Qual	itch	ele	Start Time		1025
Time	Volu Remc (L	me oved)	Temp (°C)	pł	4	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (col	our, od	our, turbidity, etc.
1030	1		17-1	9.3	6	-333.6	2962	9.28	Cle	or, orco	nic	adaur
1035	5	,	17.4	7.30	3	-282-1	4821	5-64		- 0	- 1	~
1040	10)	17.9 7.3		2	-(66	4957	4.86			• •	~
<u> </u>			-						1			
Purging sho stabilised m % and tem	ould conti neasurem perature	inue for ients are is within	a minimum e achieved. 0.5 °C over	of three Stabilities two sure	e bo sed r cces	1 re volumes c neasuremer sive measure	l and stabilise its for pH are ements.	1 d measuren e within 0.1 p	nents ar oH units	e achieved or ; EC, redox an	until the d dissolve	bore purges dry and d oxygen are within 10
Well Sam	npling li	nform	ation									
Time	Volui Remo (L)	me ived)	Temp (°C)	ph	ł	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Corr	nments (co	lour, oa	lour, turbidity, etc.
1040	(0		18-6	8-6	2	- 161-6	4957	4-86	Cle	uer, org	phic	odour
											5	
									-			
End Time	:					Depth to	Water To	able:				
Sample (Collecti	ion Su	mmary									
	Primary	Samp	ole ID			Intro	1-lab Sam	ple ID		- In	ter-lab	Sample ID
B	sHe.	390	-			-				-		

Client: HCCDC Date: 6 - 7 - 22 Site: KIWEF & EFAP Field Team: FA DLA Wachter: Date Cast / Rain FA DLA Wachter: Date Cast / Rain FA DLA Water Level Data (measured as metres from Top of Casing [ToC]) A. Depth for Water Table (ToC): N. 3 \ M NAPL present? EVes Enfo D. Well Stickup (ToC to ground levell 0 - 75 m NAPL Interphase Depth: Enfo D. d. Depth of Water Column (c-0): 2 - 2 G m Mell Volume: V = $\pi \frac{d^2}{4} \times c$ = Well Purge Information Purge Method: Bac Set Purge Depth: L 3 (M Field Equipment: If (S I Volume FEC Disco: Comments (colour, odour, turbidity, etc. If (L) If 7.5 7.74 -141.3 149.9 6.64 Bacon, much groups and start acc If (L) If 0 If 6.5 -221.6 S8 4.91	Project I	No. N46	656					-	Well ID:		KIL	1	
Site: KIWEF & EPAP Field Team: Field Team: Field Team: Field Team: Water Level Data (measured as metres from Top of Casing [ToC]) a. Depth to Water Table [ToC]: 1.3 \wdots with the Value [ToC] [T	Client:	HC	CDC						Date:		6-7.	- 2	2
Weather: Due cost / Ruin Held learn: (+A, , DL) Water Level Data (measured as metres from Top of Casing [ToC]) a. Depth to Water Table (ToC): 1. 31 m NAPL present? UYes Etho b. Well Stickup (ToC to ground level) 0. 75 m	Site:	KIW	/EF &	EPAP								2.	
Water Level Data (measured as metres from Top of Casing [ToC]) a. Depth to Water Toble (ToC): 1.31 NAPL present? DYes DYes DYes b. Well Stickup (ToC to ground level) 0.75 m NAPL Interphase Depth: DYes DYes DYes c. Total Well Length: 3.57 m NAPL Interphase Depth: DYes DYes DYes d. Depth of Water Column (c-a): 2.26 m Well Yourge Network Purge Depth: 1.31 m e. Casing Diameter: Som Som Well Yourge Network Purge Depth: 1.31 m Field Equipment: If (C) Order Quark (Laston) Disc.02 Comments (colour, odour, turbidity, etc. (1/05 (17.5 7.74 -141.3 94 6.64 Bown, monty engence and (1/05 17.2 6.63 -2216 5.88 4.91	Weathe	r: D.	ren	cast	IR	lai	- 1		Field led	am:	FA,	21-	7
a. Depth to Water Table (ToC): 1.31 m NAPL present? If Yes If Mo b. Well Stickup (ToC to ground level) 0 - 75 m If Mo If Mo c. Total Well Length; 3 - 57 m NAPL Interphase Depth: If Mo d. Depth of Water Column (c-g): 2 - 2 6 m If Well Stickup (ToC to ground level) If Mo d. Depth of Water Column (c-g): 2 - 2 6 m If Well Stickup (ToC to ground level) If Mo d. Depth of Water Column (c-g): 2 - 2 6 m If Well Stickup (ToC to ground level) If Mo e. Casing Diameter: 50 m Purge Depth: 1 - 3 (m) Field Equipment: If Q, f(SI Water Quark for the Stort Time: If 0 0 Time Removed (L) PH Redox (L) Mole for the Stort Time: If 0 0 If 0 5 If 7.2 6 -6 3 -2216 S3 & 4.91	Water Le	evel Data	(me	asured a	as met	res	from Top (of Casing	[ToC])	-			
b. Well Stickup (ToC to ground level) 0 - 75 m c. Total Well Length: 3 - 57 m NAPL Interphase Depth d. Depth of Water Column (c-q): 2 - 2 6 m e. Casing Diameter: 50 m Well Purge Information Purge Method: 8 a Ser Purge Depth: 1 - 3 (m Field Equipment: I. R, (SI) Safe Qual 4, Methods for Time: 11 00 Time Removed Temp PH Redox ($U_{1}^{S/Cm}$ ($U_{1}^{S/Cm}$ (U_{2}^{Sm})) ($U_{1}^{S/Cm}$ (U_{1}^{S} , 7.74 - $U_{1}^{U_{1}}$) 494 6 64 8 m (U_{1}^{S} (U_{1}^{S} , 7.74 - $U_{1}^{U_{1}}$) 494 6 64 8 m (U_{1}^{S} (U_{1}^{S} , 7.74 - $U_{1}^{U_{1}}$) 494 6 64 8 m (U_{1}^{S} (U_{1}^{S} , 7.74 - $U_{1}^{U_{1}}$) 494 6 64 8 m (U_{1}^{S} (U_{1}^{S} , 7.74 - $U_{1}^{U_{1}}$) 494 7 6 64 8 m (U_{1}^{S} (U_{1}^{S} , 5.82 - 2216 5 28 4 4 9 1	a. Dept	th to Wat	er To	ible (ToC)	1	1	. 31 /	>	NAPL pre	esent?		ĺ	Yes ANO
c. Total Well Length: d. Depth of Water Column (c-a): 2.26 m e. Casing Diameter: Some Well Purge Information Purge Method: Bar Ser Field Equipment: TR, CST Water Count 4, Methods Start Time: TI DO Time Removed (C) 17.5 17.2 6.63 -2216 538 4.91 115 10 17.2 17	b. Well	Stickup (1	foC to	o ground	level)	0	.75	~					
d. Depth of Water Column (c-q): 2.2.2.6 m e. Casing Diameter: Well Purge Information Purge Method: Backer Purge Depth: 1.3.1 m Field Equipment: T.Q. (SI Date Color, Methods Start Time: 11.00 Time Removed (C) pH Redox (EC (IDS (17.2.5.7.74 - 14).3.99.9 6.64 Brown, more grant and 11.0 5 17.2.6.63 - 221.6.53.8 4.91 11.0 16.8 5.82 - 228.3 (4% 2.9.9	c. Total	Well Len	gth:			3	.37	~	NAPL Inte	erphas	se Depth:	/	
e. Casing Diameter: Some Well Volume: $V = \pi \frac{1}{2} \times c = \frac{1}{2}$ Well Purge Information Purge Method: Ball Ser Purge Depth: 1-31 M Field Equipment: IP, CST Water Currently, Methods Start Time: 11 00 Time Removed (C) pH Redox (LS/cm [ppm]) Comments (colour, odour, turbidity, etc. (L) (C) (L) (C) (C) pH (Redox (LS/cm [ppm])) Comments (colour, odour, turbidity, etc. (L) (L) (C) (C) (C) pH (Redox (LS/cm [ppm])) Comments (colour, odour, turbidity, etc. (L) (L) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	d. Dept	th of Wat	er Co	olumn (c	-a):	2	-26	~				2	42
Well Purge Information Purge Method: Baller Purge Depth: 1.31m Field Equipment: IP (C) Purge Depth: 1.31m Time Volume Removed (C) pH Redox EC If (C) PH Redox EC Comments (colour, odour, turbidity, etc. (I/OS (17.5 7.74 -141.3 99.9 6.644 Bown, murky, ergenia ac (I/OS 1 2 6.63 -2216 5.38 4.91	e. Casir	ng Diame	eter:				30-			We	Il Volume:	$V = \pi$	$\frac{a^{-}}{4} \times c =$
Purge Method: Bar Ker Purge Depth: 1-31m Field Equipment: I.Q., (SI water Quality, Methods Start Time: 1100 Time Removed Temp PH Redox (US/cm) (DS.O) (DBM) (DBM) (DS.O) (DBM) (DS.O) (DS.O) (DBM) (DS.O) (Well Pur	ge Inform	natio	n			2010					37 7	
Field Equipment: I.Q. (SI water Quality, Mee Start Time: II.Do Time Removed (PC) pH Redax (mV) E_{C}^{C} Diss.O2 (ppm) Comments (colour, adour, turbidity, etc. (ppm) (I/OS (17.5 7.74 -141.3 99.9 6.64 Bown, murtup, arganic adout it it is	Purge M	lethod:		Bait	er						Purge Dep	th:	1-31m
Time Volume Removed (L) Temp (%C) pH Redox (mV) EC (L)S/Cm (ppm) Diss.O2 (ppm) Comments (colour, odour, turbidity, etc. (ppm) (1/05 (17.5 7.74 -141.3 99.9 6.64 Brown, marking, arganic, ac 111.0 5 17.2 6.63 -221.6 5.38 4.91	Field Equ	uipment:		IP.	es?	2	water	Que	al the	nete	Start Time:		1100
(105 (17.5) 7.74 -141.3 99.9 6.64 $Bman, marky, argania and arga$	Time	Volum Remov	ne red	Temp (°C)	pl	Н	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Corr	nments (colo	our, oc	dour, turbidity, etc.
III (1105	(17.5	7.7	74	-141.3	999	6-64	Bro	Un ML	rk.	
IIIS IO IO. S S. S2 -228.3 I48 2-99	1116	5		17.2	6-6	3	-221.6	528	491	1-		-	1. 0.50.000
Purging should continue for a minimum of three bore volumes and stabilised measurements are achieved or until the bore purges dry and stabilised measurements are achieved or until the bore purges dry and stabilised measurements are achieved or until the bore purges dry and stabilised measurements are achieved or until the bore purges dry and dissolved oxygen are within 10 % and temperature is within 0.5 °C over two successive measurements. Well Sampling Information Time Volume Removed Temp PH Redox EC (I/15 10 16.8 5.82 -22.8.3 14.8 2.99 Gase Society, ordour, turbidity, etc. (I/15 10 16.8 5.82 -22.8.3 End Time: Depth to Water Table:	(115	10		16.8	51	\$2	-228.3	148	2.99		_	_	
Stabilized measurements are achieved. Stabilized measurements for pH are within 0.1 pH units; EC, redox and dissolved oxygen are within 10 % and temperature is within 0.5 °C over two successive measurements. Well Sampling Information Time Volume (L) Temp (°C) pH Redox (mV) EC (µS/cm) Diss.O2 (ppm) Comments (colour, odour, turbidity, etc.) ((15 1.0 16.8 5.82 -228.3 14.8 2.99 Gase Sham, molty, argues End Time: Depth to Water Table; Sample Collection Summary Primary Sample ID Intra-lab Sample ID Inter-lab Sample ID	Puraina sh		ue for	a minimum	a of three			and stabilise				until the	baro purgar day and
Well Sampling Information Time Volume Removed (L) Temp (°C) pH Redox (mV) EC (µS/cm) Diss. O2 (ppm) Comments (colour, odour, turbidity, etc. ((1) 10 16.8 5.82 -228.3 14.8 2.99 Comments (colour, odour, turbidity, etc. ((1) 10 16.8 5.82 -228.3 14.8 2.99 Comments (colour, odour, turbidity, etc. (1) 0 16.8 5.82 -228.3 14.8 2.99 Comments (colour, odour, turbidity, etc. (1) 0 16.8 5.82 -228.3 14.8 2.99 Comments (colour, odour, turbidity, etc. (1) 0 1 0 0 0 0 (1) 0 1 0 0 0 0 End Time: Depth to Water Table: Depth to Water Table: Sample Collection Summary Intra-lab Sample ID Inter-lab Sample ID Winary Sample ID Intra-lab Sample ID Inter-lab Sample ID Inter-lab Sample ID	stabilised r % and tem	measureme operature is	nts are within	e achieved 0.5 °C ove	I. Stabil r two su	ised i	measuremer ssive measure	nts for pH an ements.	e within 0.1 j	pH units	; EC, redox and	l dissolv	ed oxygen are within 10
Time Volume Removed (L) Temp (°C) pH Redox (mV) EC (µS/cm) Diss.O2 (ppm) Comments (colour, odour, turbidity, etc. ((1) 10 16-8 5.82 -228.3 14-8 2.99 Game Source, model, organized Image: Ima	Well San	npling Inf	forme	ation									
IIIF IO I6 & 5.82 -228.3 I4 & 2.99 Gene Brann, marking, angles IIIF III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Time	Volum Remov (L)	ne red	Temp (°C)	pl	Ч	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	nments (col	our, oc	dour, turbidity, etc.
End Time: Depth to Water Table: Sample Collection Summary Primary Sample ID Intra-lab Sample ID Inter-lab Sample ID	(15	10	0	16.8	5.8	2	-228.3	148	2.99	G	Brown	, MU	uky organic.
End Time: Depth to Water Table: Sample Collection Summary Primary Sample ID Intra-lab Sample ID Inter-lab Sample ID KU/L													
End Time: Depth to Water Table: Sample Collection Summary Primary Sample ID Intra-Iab Sample ID Inter-Iab Sample ID CU/L													
Sample Collection Summary Primary Sample ID Intra-lab Sample ID LULL	End Time	э:					Depth to	Water To	able:		- 101 -	1.1	
Primary Sample ID Intra-lab Sample ID Inter-lab Sample ID Ku/u - -	Sample	Collectio	n Su	mmary							·		
Ku/, -		Primary S	Samp	ble ID			Intro	a-lab Sam	nple ID		Ini	er-lab	Sample ID
	C	211/	1				÷	-				_	

Project N	No. N465	6					Well ID:		KII	115					
Client:	HCCI	DC				39.5	Date:		6-7-	-22					
Site:	KIWE	F & EPAP					Field Tee		FA	DIL					
Weather	: Ore	rcast	1Re	21	-		Field led	am:		SIT					
Water Le	evel Data (I	measured o	is met	res	from Top	of Casing	[ToC])								
a. Dept	h to Water	Table (ToC)	8	2	.80m		NAPL pre	esent?			IYes ENo				
o. Wells	Stickup (To	C to ground I	level)	0	.77~	~									
. Total	Well Lengt	h:		8	-92m		NAPL Inte	erphas	e Depth:						
l. Dept	h of Water	Column (c	-a):	6	.12m	-				d	2				
. Casir	ng Diamete	er:		4	Sorm			We	Il Volume:	$V = \pi \frac{\alpha}{4}$	- × c =				
Vell Purg	ge Informa	tion								e setulosento totos					
'urge M	ethod:	Bail	er						Purge Dep	oth:	2.80m				
ield Equ	Jipment:	IP,	PSI	c	sater	Reald	ty Met	e	Start Time		1125				
Time	Volume Removed (L)	d Temp (°C)	pł	-1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Corr	iments (col	lour, odd	our, turbidity, etc.				
130	1	17.4	8.1	3	-182.4	4286	0.66	9m	from murky, orceric od						
135	5	18.0	7.7	17	-267.5	5726	2.18		e						
140	(0)	(8.0	7	77	-278.0	5530	1.83	-	~						
(145	15	18.9	7.8	2	-2809	5990	1-94			+	_				
Purging sha tabilised n & and tem Well San	puld continue neasurements perature is wi npling Info r	for a minimum are achieved thin 0.5 °C ove rmation	n of thre I. Stabili r two su	e bo ised r cces	re volumes o neasuremer sive measur	and stabilise hts for pH ar ements.	ed measuren e within 0,1 j	nents ar pH units;	e achieved or ; EC, redox an	until the b d dissolve	oore purges dry and d oxygen are within 10				
Timo	Volume	Temp	-		Redox	EC	Diss.O2			laun ad	a a tablatta ata				
nine	(L)	(°C)	pr		(mV)	(µs/cm	(ppm)	Con	iments (co	iour, oai	our, turbiany, erc.				
145	(5	18-9	28	2	-380.9	5990	1.94	30	when the	vkey.	orgenic ada				
nd Time	9:				Depth tr) Water T	able.		-						
ample	Collection	Summary	- Sec. 1		Partic	- naier l									
	Primary Sa	mple ID	Í.		Intro	a-lab San	nple ID		In	ter-lab S	Sample ID				
1C	11/	15			C	RC3				QC	2 A				

Project N	o. N4656					Well ID:		BHe2	65	
Client:	HCCDC					Date:		7-7-	22	
Site:	KIWEF &	EPAP				Field Terr		DIL		
Weather:	over	est				neid led	111;	513		
Water Lev	vel Data (me	asured as	s metres	from Top o	of Casing	[ToC])				
a. Depth	to Water Tc	ible (ToC):	2	1.18m		NAPL pre	sent?			IYes 🖽o
b. Well S	tickup (ToC t	o ground le	evel) (0.64~	•					/
c. Total V	Well Length:		1	2.63	~	NAPL Inte	erpha	se Depth:	/	
d. Depth	of Water C	olumn (c-	a):	0.45~	~				a. d	2
e. Casing	g Diameter:	10) 10)	L	10 mm			VVe	ell volume:	$V = \pi - \frac{1}{4}$	$- \times c =$
Well Purg	e Informatio	n								
Purge Me	ethod:	Baile	-					Purge De	oth: 🏫	0730
Field Equ	ipment:	IP, YS	SI Lo	ate Qu	rality	Mete		Start Time	5	2.18~
Time	Volume Removed (L)	Temp (°C)	pН	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Con	nments (co	lour, od	our, turbidity, etc.
0735	١	15.6	7.39	45.9	8.8	12.70	ci	eer, no	o oclo	sur .
0740	2.5	15.8	8.11	26.8	308.4	9.51	Sh	onthe m	where	10 odia
0742	5	16.0	8.36	37.2	281.4	5.32		Sil	-1	
0744	7.5	16.0	8.42	40.8	272.8	5.13	live	y slig	htly !	moly, no edd
0746	10	16.0	8.45	42.6	5.05		3			
				12						
Purging sho stabilised m % and temp	uld continue fo leasurements ar perature is withir	1 r a minimum e achieved. n 0.5 °C over	of three b Stabilised two succe	ore volumes (I measureme essive measur	and stabilise nts for pH ar rements.	d measuren e within 0.1 p	i nents a oH unit	re achieved o s; EC, redox ar	r until the id dissolve	bore purges dry and ad oxygen are within 10
Well Sam	pling Inform	ation						2		
Time	Volume Removed (L)	Temp (°C)	рН	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Cor	mments (cc	lour, oc	lour, turbidity, etc.
0746	10	16.0	8.45	42.6	264.3	5.05	we	y, sligh	thyn	inky, 1000
						1				
					· · · · · · · · · ·					
	-1 ⁴				1 A					
End Time				Dooth t		able:				
Samela (Collogitar S			Depinin		uble.				
sumple (Primary Sam	ple ID		Intr	a-lab Sar	nple ID		I	nter-lab	Sample ID
Q1	40 16	<								

Project	No.	N4656						Well ID:		BHES	26 D	
Client:		HCCDC						Date:		7-7	- 22	
Site:		KIWEF 8	EPAP				1.1.1			D1+		
Weathe	r:	ore	recst					Field Te	am:			
Water Le	evel D	ata (me	easured a	ıs met	res	from Top	of Casing	[ToC])				
a. Dept	th to N	Vater To	able (ToC)	;	3.	24~		NAPL pre	esent?			IYes Ito
b. Well	Sticku	p (ToC t	o ground l	evel)	0	.68m						1
c. Total	Well	Length:			0	5.670	-	NAPL Int	erpha	se Depth:	/	
d. Dept	th of V	Vater C	olumn (c-	-a):	17	3.431	~			/		.2
e. Casir	ng Dia	ameter:			(40			We	ell Volume:	$V = \pi \frac{a}{c}$	$\frac{1}{4} \times c =$
Well Purg	ge Inf	ormatio	n									
Purge M	letho	d:	Baile	2		1.11				Purge Dep	oth:	3.24~
Field Equ	Jipme	ent:	IP,	YSI	L	rate O	Ruchte	n Mete	-	Start Time:		0755
Time	Vc Ren	lume noved (L)	Temp (°C)	pł	-1	Redox (mV)	EC (µ\$/cm	Diss.O2 (ppm)	Com	nments (col	our, od	our, turbidity, etc.
0800		1	16.7	8.5	3	-208,5	3252	10.45	Cie	ar or	See.2	odia
0504		5	19.2	7.2	23	-277.2	7061	2.43	A	u .	2	~
0810	1	0	19.4	7.2	4	-278.7	10493	2.24	Lie		~	~
0815	1	5	19.5 7.2		6	-280.9	10526	2.19		- x	¢	
Purging sho stabilised n % and tem Well Sarr	puld ca neasure peratu	ntinue for ements are re is within	a minimum e achieved. 0.5 °C over ation	of three Stabilis two suc	e bo sed i cces	re volumes o measuremen ssive measur	and stabilise ats for pH an ements.	d measuren e within 0.1 p	nents ar oH units;	e achieved or EC, redox anc	until the t I dissolve	core purges dry and d oxygen are within 10
	Vo	lume	Temp			Podey	EC	Dimo			_	
Time	Ren	10ved (L)	(°C)	ph	1	(mV)	(µ\$/cm)	(ppm)	Com	iments (colo	our, od	our, turbidity, etc.
0815	1.	5	19.5	7.2	6	-280.9	10526	2-19	Clea	er, or	<u>s</u> a	it ocles
								1				
						-						
I End Time	:					Depth to	Water To	able:				
Sample C	Collec	tion Su	mmary									
F	Prima	ry Samp	le ID			Intro	a-lab Sam	iple ID		Int	er-lab S	Sample ID
BI	le	26 D					-			-		

1

1.10 .10

para por al la Para de C

1

Project I	No. N4656						Well ID:		1	R	CA1
Client:	HCCDO						Date:	_	7- '	712	22
Site:	KIWEF a	EPAP				H	÷		120		2.00
Weather	: are	cast					Field Te	am:	FIL	DIA	
Water Le	evel Data (m	easured c	as mei	tres	from Top	of Casing	[ToC])				
a. Dept	h to Water T	able (ToC)	:	6	94~		NAPL pre	esenta	3	Γ	TYes DINO
b. Well	Stickup (ToC	to ground	level)	0	.72~	-					/
c. Total	Well Length:			8	. 70-	~	NAPL Int	erpho	ise Depth:	/	
d. Dept	h of Water C	Column (c	-a):	1	76~	~					
e. Casir	ng Diameter:			5	omr	-		We	ell Volume: 1	$V = \pi \frac{a}{c}$	$\frac{c^2}{4} \times c =$
Well Purg	ge Informatio	on.									
Purge M	ethod:	Dail-	e						Purge Dept	h:	6 gun
Field Equ	ipment:	TP. 7	SI	w	ate Q	uality	Mete		Start Time:		1100
Time	Volume Removed	Temp (°C)	. pł	1	Redox (mV)	EC (µS/cm	Diss.O2 (ppm)	Con	nments (colo	ur, od	our, turbidity, etc
1102	1	19.4	9.1	12-11792		20.5	15.71	BICO	k turbie	1. 1	no eclase
105	5	18.6 7.31		1	-111.9	682	3,08				
108	(0)	18.6	7.2	2	-121.7	667	297	¢		~	-
1115	15	18.7	7.2	4	-115.6	650	2.77				
Purging sho stabilised m & and temp Well Sam	uld continue for leasurements ar perature is within pling Inform Volume	a minimum e achieved. 10.5 °C over ation Temp	of three Stabilis two suc	e bor sed m ccess	e volumes c neasuremer ive measure Redox	and stabilise hts for pH an ements. EC	d measuren e within 0.1 p Diss 02	nents ar bH units	e achieved or ur ; EC, redox and d	ntil the t dissolve	oore purges dry and d oxygen are within 11
nne	(L)	(°C)	pr	1	(mV)	(µS/cm)	(ppm)	Con	nments (coloi	ur, od	our, turbidity, etc
1108	15.	18.7	7.2	4 -	115.6	650	271	Ble	ch, turbid	1	o octour
				_	•						
						4					
nd Time					Depth to	Water To	able:				
ample (Collection Su	mmary	59						1.14	- 1.5	
F	rimary Samp	ole ID			Intro	i-lab Sam	ple ID		Inte	r-lab S	ample ID

1. 2

Project N	0. N	4656						Well ID:		2CA-	2	
Client:	н	CCDC	Ś.					Date:		7-7-	22	× 1
Site:	К	IWEF &	EPAP					Field Tee		DI	20	Harrison (Charles (Charles))
Weather:	(ive	Cest					rield led	m:	-141	(
Water Lev	vel Da	ta (me	asured a	s metr	es fr	om Top o	of Casing	[ToC])				2
a. Depth	n to W	ater Ta	ible (ToC)		9	39~	<u></u>	NAPL pre	sent?		ſ	IYes INO
b. Well S	tickup	(ToC to	o ground le	evel)	0	. 78^	2					/
c. Total \	Well Le	ength:		-	I	2.10	~	NAPL Inte	erphase	e Depth:	/	
d. Depth	n of W	ater Co	olumn (c-	a):	2	71~	^			-		d ²
e. Casin	g Diar	neter:	1 10 11	44.2 ·	5	0~~	2 J. 2 200 2		vveil	volume:	$V = \pi$	$\frac{1}{4} \times C =$
Well Purg	e Info	rmatio	n									
Purge Me	ethod:		Boul	ter						Purge De	pth:	9.39~
Field Equ	ipmer	it:	IR,	155	5	ale	Qualit	y met	e	Start Time	e:	1035
Time	Volu Rem (I	ume oved	Temp (°C)	pŀ	1	Redox (mV)	EC (µ\$/cm)	Diss.O2 (ppm)	Comr	nents (co	lour, oc	dour, turbidity, e
1036	1		19.5	7.2	0	-1124	8306	12-05	Clea	C 00	oclo	4
1040	5		21.8	7.0	4	-178.9	10137	8.75	Darie	sten	teulic	1 no odou
1044	7	0	19.3	7.0	7	-158.0	10497	2.13	-	251		
1									Well	Dy a	fte -	76
							1.8	,		0		
					_							
Purging sho stabilised m % and temp Well Sam	ould con neasurei perature n pling	tinue for ments ar is within	a minimum e achieved 1 0.5 °C over ation	of thre . Stabili r two su	e bor sed n ccess	e volumes o neasuremer ive measur	and stabilise nts for pH ar ements.	1 d measuren e within 0.1 p	nents are oH units; I	achieved o EC, redox a	or until the nd dissolv	bore purges dry an ed oxygen are withi
Time	Voli Rem (ume oved L)	Temp (°C)	pł	-1	Redox (mV)	EC (µS/cm)	Diss.O2 (ppm)	Comi	ments (co	plour, o	dour, turbidity, e
1044	7		19.3	7.0	7	158.0	10497	2.17	Dark	grey	twb	id no aclos
		Sie.					1		1			
		54.8				D			1			
End Time						Depth to) Water T	able:				
End Time Sample (collec	tion Su	mmary			Depth to	o Water T	able:			nter-lab	Sample ID

33

한만화품종 이상화용이 와도 가지 가죽다...(1968년 2014년 1971년 2017년 2017

Project N	lo.	N4656	I I mar				L	Well ID:		GHD01	2	
Client:		HCCDC						Date:		7-7-22		
Site:	-	KIWEF &	EPAP		1.1			F1.1.1.7		PA, DH		
Weather	:	over	cest					Fleid led	im:			
Water Le	vel D	ata (me	asured as	s metre	es from T	op o	of Casing	[ToC])		nape à		
a. Dept	h to V	Water Ta	ble (ToC):		8.0	Sr	~	NAPL pre	senta		🗆 Yes 🖾 No	
b. Wells	Sticku	up (ToC to	o ground le	evel)	0.2	7~		4				
c. Total	Well	Length:			19.9	51	~	NAPL Inte	erpha	ise Depth:		
d. Dept	h of \	Water Co	olumn (c-i	a):	500	n.	11~				<i>d</i> ²	
e. Casir	ng Die	ameter:			50	~~		/	hu	ell Volume: V =	$\pi \frac{1}{4} \times c =$	
Well Purg	ge In	formation	n									
Purge M	etho	d:								Purge Depth:		
Field Equ	Jipme	ent:				-				Start Time:	· · · · · ·	
Time	Va Rei	olume moved (L)	Temp (°C)	рН	Rec (m)	lox VJ	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	nments (colour,	odour, turbidity, etc.	
		17					/		-			
					/	/		/				
		E TE		/			/					
		Г.I.Ч	/		/				Uno	se to sa	mple due	
		/		/					to	obstricts	- about	
	/	/	/						5,	~ dept		
	-	0										
Purging sho stabilised r % and tem	ould c neasu peratu	ontinue for rements are ure is within	a minimum e achieved. 0.5 °C over	of three Stabilise two suc	bore volu ed measur cessive me	mes c emer easure	and stabilise nts for pH ar ements.	d measuren e within 0.1 p	nents a pH unit	ire achieved or until t s; EC, redox and disso	he bore purges dry and olved oxygen are within 10	
Well San	nplin	g Informe	ation			_	/					
Time	Rei	noved (L)	Temp (°C)	рH	Rec (m	lox V)	EC (µ\$/cm)	Diss.O2 (ppm)	Cor	mments (colour,	odour, turbidity, etc.	
			/			/						
		/		/							uillight de Ly	
		/	/				e					
	/	/		-								
End Time					Dar	thte	WaterT	able:				
Samela	Calle	ation for			Dep	11110	water I	uble.				
sumple	Prim	ary Sam	ole ID	1		Intro	a-lab San	nple ID		Inter-Ic	ab Sample ID	
			-						1			

Project N	No.	N4656						Well ID:	-	GHDO	94p	
Client:		HCCDC	DC					Date:		7-7-22		
Site:		KIWEF &	EPAP					F1-1-1 7		FADH		
Weather	:	aver	cost				Field led	im:				
Water Le	evel D	ata (me	asured a	s met	res f	rom Top	of Casing	[ToC])				
a. Dept	h to V	Vater Tc	ible (ToC)	5	5	.99~		NAPL pre	sent	2	E	Yes Diro
b. Wells	Sticku	ip (ToC to	o ground l	evel)	0	.25~	1					
c. Total	Well	Length:			0	1-38 r	~	NAPL Inte	erpho	ise Depth:	/	
d. Dept	h of V	Vater Co	olumn (c·	-a):	3	2.391	~					<i>t</i> ²
e. Casir	ng Dic	ameter:			5	50			VV	en volume:	$V = \pi$	$\frac{1}{4} \times c =$
Well Purg	ge Inf	ormatio	n									
Purge M	ethoo	d:						- 1		Purge Dep	oth:	
Field Equ	Jipme	ent:								Start Time		1
Time	Vo Ren	noved	Temp (°C)	pl	ч	Redox (mV)	EC (µS/cm	Diss.O ₂	Cor	nments (col	our, oc	lour, turbidity, etc.
		(L)							-			
				/	/							
			/						1 7	11 1	5 1 5 S	
		/	/	/	_					osle to	Con	ple due
		/	-/		-				to	Pipe :	stuc	t h
-	/	/	/		-				we	ll at	about	+ 2-60m dep
Purging sho stabilised n % and tem Well San	ould co neasure peratu	ontinue for ements are tre is within	a minimum e achieved 0.5 °C ove ation	of thre Stabil two su	e boi ised r icces	re volumes neasureme sive measu	and stabilise nts for pH ar rements.	d measuren e within 0.1 p	hents a oH unit:	rre achieved or s; EC, redox an	until the d dissolve	bore purges dry and ed oxygen are within 10
Time	Vo Ren	ilume noved (L)	Temp (°C)	pl	1	Redex (mV)	EC (µS/cm)	Diss.O2 (ppm)	Cor	nments (col	lour, oc	lour, turbidity, etc.
		/	4									
	/	\neq		/	_				-			
	/		/									
						Denth t	WaterT	chle:			_	
End Time						Debiuit	o water i	uple.	L			
End Time	on line	aller Cu										

Ground and Surface Water Monitoring, Kooragang Island Waste Emplacement Facility Annual Monitoring 2022

Interface Meter Heron H.Oil

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (60m)
Serial Number	01-7947
Client Name	Florence Archer (Hazmat Services)
Project Number	6071

	Instrument Check								
Item	Test	Test Passed	Comments						
9V Battery	Klein Tools MM300 Multimeter	✓	Battery voltage reading above 7.9V						
Battery Box	Check	\checkmark	No damage						
Face and Back Plates	Check	\checkmark	No damage						
Thumb Screws	Check	✓	Rubber ends intact						
Tape Hangar/Protector	Check	\checkmark	No damage						
On/Off Button	Operation	\checkmark	Button is functional						
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product						
LED Signal Light	Operation	\checkmark	LED light functional – green and red						
Probe	Operation/Check	\checkmark	Decontaminated, cleaned and tested						
Таре	Condition/Check	✓	Decontaminated and cleaned, no damage						
Connection	Check	\checkmark	Probe and link connected correctly and tightly						
РСВ	Operation	\checkmark	Unit is fully functional						
Electronics Panel	Orientation	\checkmark	Correctly aligned						

Instrument Readings								
Product	Buzzer	LED Light						
H ₂ O	Intermittent	Blinking – Red						
Petroleum	Solid	Steady – Red						

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	15/06/2022
Calibration Due	15/12/2022

WAM Scientific: 26 Bungarra Crescent CHIPPING NORTON NSW 2170 T: +61 405 241 484 | +61 424 198 667 E: rentals@wamscientific.com.au E: accounts@wamscientific.com.au

Water Quality Meter YSI Professional Plus

Company Name	WAM Scientific									
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170									
Phone Number	+61 405 241 484									
Contact Name	William Pak									
Instrument	YSI Pro	ofessional Plus Wat	er Quality Met	ter w/	1m Quatr	o Cable				
Serial Number	21C10	0012		,						
Client Name	Floren	ice Archer (Hazmat	Services)							
Project Number	6071	(,							
Comments	-									
Connents			Instrum	nent Cl	neck					
Item		Test		Test	Passed		Comme	ents		
2 x Alkaline C-size Batt	eries	Klein Tools MM300) Multimeter		✓	Both batter	ies reading above	e 2.9V		
Battery Saver Funct	ion	Operatio	on		\checkmark	Automatica	Illy turns off after	60 minutes if i	dle	
Unit Display		Operatio	on		✓	Screen visik	ole, no damage			
Keypad		Operatio	on		\checkmark	Responsive	, no damage			
Connection Port and C	Cable	Condition/0	Check		\checkmark	Clean, no d	amage			
Monitor Housing		Condition/C	Check		✓	No damage				
Firmware		Version	า		✓	4.0.0				
pH Probe		Condition/Cal	ibration		✓	Calibrated a	and conforms to r	manufacturer's	specs	
pH millivolts for pH 7	.00	Calibrati	on		✓	pH 7.00 cal	ibration range be	tween 0 mV ± 5	50 mV	
pH millivolts for pH 4	.00	Calibrati	on		✓ 	pH 4 mV range +165 to +180 from 7 buffer mV value				
pH slope		Calibrati	on		√	Range betw	veen 55 to 60 mV	/pH (ideal value	e 59 mV)	
Response time < 90 seconds		Calibrati	on		✓	Responds to	o correct value w	ithin 90 second	S	
ORP Probe		Condition/Cal	ipration		▼ √	Calibrated a	and conforms to r	nanufacturer s	specs	
ORP Reduing	onde	Calibrati	on		• •	Posponds t	o correct value w	ZODEII Reauling	<u> </u>	
Conductivity/Temp P	rohe	Condition/Cal	ibration		<u>↓</u>	Calibrated	and conforms to r	manufacturer's	snecs	
Conductivity Cell	ODE	Calibrati	on		· ✓	Conductivit	v cell constant 5 (1 + 1.0 in GLP fi	ile	
Clean Sensor Readir	ายร	Calibrati	on		✓	Clean senso	or reads less than	3 uS/cm in dry	air	
Dissolved Oxygen Pr	obe	Condition/Cal	ibration		✓	Calibrated a	and conforms to r	manufacturer's	specs	
DO Cap		Condition/Cal	ibration	✓		1.25 mil PE membrane (yellow membrane)				
DO Sensor in Use		Conditio	on		✓	Polarographic DO sensor				
DO Sensor Value		Calibrati	on		✓	(min 4.31 u	A - max 8.00 uA)	Avg 6.15 uA		
			Instrume	nt Rea	ndings	•				
Parameter	S	tandard Used	Reference	No.	Calibra	tion Value	Observed	Actual	Units	
Temperature	Centre	e 370 Thermometer	Room Tem	ıp.		8.6	8.7	8.6	°C	
рН		рН 4.00	351750		4	1.01	4.05	4.01	рН	
рН		рН 7.00	351621		7	7.00	7.05	7.00	рН	
Conductivity	27	60 μs/cm at 25°C	362912		2	760	2819	2760	μs/cm	
ORP (Ref. check only)		Zobell A & B	364644/363	903	2	53.3	250.5	253.3	mV	
Zero Dissolved O ₂	NaS	O_3 in Distilled H_2O	362832			0.0	-0.1	0.0	%	
100% Dissolved O ₂	100%	6 Air Saturated H ₂ O	Fresh Air		1	00.0	115.3	100.0	%	
			Decl	aratio	n					
WAM Scientific cert	ifies that	at the above instru	ment was suc	ccessfu	Illy tested	d according	to manufacture	er's standards	s and all	
necessary checks wer	e cond	ucted to ensure the	instrument wa	as fully	operatio	nal prior to o	lispatch. The ca	libration data	supplied	
was obtained in acco	rdance	with manufacturer'	s specification	ns usin	g solutior	is of known	values.			
Calibrated By					William F	Pak				
Calibration Date					15/06/20)22				
Calibration Due					15/12/20)22				

WAM Scientific: 26 Bungarra Crescent CHIPPING NORTON NSW 2170 T: +61 405 241 484 | +61 424 198 667 E: rentals@wamscientific.com.au E: accounts@wamscientific.com.au

Bladder Pump QED MP15 Micropurge Kit

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	QED MP15 Kit
Serial Number	Sample Pro Pump: 144816
Serial Number	MP15 Backpack: 1729
Client Name	Florence Archer (Hazmat Services)
Project Number	6071

	Instrument Check								
Item	Test	Test Passed	Comments						
MP15 Backpack Controller	Operation	✓	Controller operational						
Gas Regulator	Condition	✓	No damage, good condition						
Wrench and Tube Cutter	Condition	✓	Attached to the controller						
Blue Coiled Hose	Condition	✓	No tears, clean, good condition						
Tube Connection Fitting	Condition	✓	No damage						
Black Canvas Bag	Condition	✓	No damage, clean						
Sample Pro Pump	Condition	✓	No damage, decontaminated						
Bladder	Condition	✓	1x New bladder included free of charge						
Pump Fittings	Condition	✓	No damage, good condition						
CO2 Gas Bottle	Check & Test	✓	1x CO2 bottle included free of charge						
Kit Operation	Operation	✓	MP15 kit fully operational						
Instructional Manual	-	\checkmark	User manual included						

Inclusions

The MP15 Kit should include the following items:

- QED MP15 Backpack Controller, Blue Coiled Hose with Tube Connection Fitting, Wrench and Tube Cutter, Sample Pro Pump, 1x CO2 gas bottle fitted with the MP15 Backpack, Wire Cable Hand Reel and spares/accessories box
- Additional CO2 gas bottles will be supplied upon request at an additional cost

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The pump has been decontaminated and cleaned upon return from the previous hire and is in good working order.

Checked By	William Pak
Calibration Date	15/06/2022
Calibration Due	15/12/2022

WAM Scientific: 26 Bungarra Crescent CHIPPING NORTON NSW 2170 T: +61 405 241 484 | +61 424 198 667 E: rentals@wamscientific.com.au E: accounts@wamscientific.com.au

Calibration and Service Report

ABN: 74 619 717 350 Contact: 02 9730 2019 Email: sales@experttesting.com.au 9/171 Power Street, Glendenning NSW 2761 Web: www.experttesting.com.au

Calibration and Service Report

Company:	Hazmat Services	1	Manufacturer:	Honeywell	Serial #:	594-902349)
Contact:	Andrew Russell		Instrument:	PPBRAE 3000	Asset #:	5	
Address:	Level 1, 45c Fitzroy Street		Model:	PGM7340	Part #:	÷	
	CARRINGTON NSW 2294	C	onfiguration:	VOC	Sold:	<u> </u>	
Phone:	02 4961 1887		Wireless:		Last Cal:	26.07.2022	
Fax:	02 4969 5887		Network ID:		Job #:	102250	
Email:	andrew.russell@hazmatservices	.com.au	Unit ID:	堂	Cal Spec: Order #:	Std 6129	
Item	Test	Pass/Fail		Comments	P	art Code	S/W
onv	NiCd NiMH Dry coll Lillon	1					

Checked unit settings and configuration – okay

Cleaned sensor electrode assembly and lamp - tested okay

Unit allowed to stabilize and zero calibration performed as per manufacturers specifications

Calibration procedure written and performed to manufacturers specification using traceable gases.

Calibration Certificate

Sens or	Туре	Serial No:	Span	Concentration	Traceability	CF	Reading	
	1000		Gas		Lot #		Zero	Span
PID	10.6ev	S02330447N3	Isobutylene	10ppm	WO184499		0	10ppm

Calibrated/Repaired by:

Amend Kumar

Date:

26.07.2022

Next Due:

26.01.2023

Ground and Surface Water Monitoring, Kooragang Island Waste Emplacement Facility Annual Monitoring 2022

Appendix G – KIWEF Area 2 Cap Maintenance Summary (Ecological Australia, 2022)

Suites 28 & 29, Level 7 19 Bolton Street Newcastle NSW 2300 t: (02) 4064 8421

31 October 2022

Our ref: 20New18055

Jonathon Bourne Daracon Group PO Box 401 Beresfield NSW 2322

Dear Jonathon,

18055 Kooragang Island Area 2 Closure Works – Pre-clearance summary report 19th and 20th of October 2022

Daracon undertook vegetation clearing works at Kooragang Island Area 2 requiring of the removal and mulching of *Acacia saligna* (Golden Wreath Wattle) trees located in several locations around the Kooragang Islands Area 2 Closure Works area (see Figure 1 below). Ecologists were present to undertake Green and Golden Bell Frog (GGBF) pre-clearance surveys on each day prior to the commencement of clearing works and then for the duration of the works (Table 1).

Ecologist	19/10	20/10	
Brea Heidke	0		
Melanie Thurtell	0	0	
Julian Carson		0	
		Number of GGBF relocated	0

Table 1: Summary of GGBF located on the 19th and 20th of October

No GGBF were encountered in the works area on either day and no frogs of any type were seen. One *Chelodina longicollis* (Eastern Long-necked Turtle) was found on the 20th of October and relocated to a suitable water body immediately adjacent to but outside the works area. On the 19th of October *Acanthiza lineata* (Striated Thornbills) were seen in the works area, but no nests were seen and the birds relocated themselves outside of the area of works.

Figure 1. Location of vegetation clearing works for the 19th and 20th of October, 2022

Please contact me if you have any questions regarding this report.

Regards,

Frank Lemckert Principal Ecologist